검색
-
-
[기후의 역습(50)] 작년 캐나다 산불, 인도 1년치 탄소 배출량과 맞먹어 '충격'
- 작년에 캐나다를 강타한 기록적인 산불은 지구상의 거의 모든 나라에서 배출한 탄소보다 더 많은 탄소를 대기 중에 방출했다고 영국 독립 미디어 인디펜던트가 전했다. 캐나다의 단일 산불이 지구 온난화의 가장 큰 원인을 제공했다는 분석이다. 나사(NASA)의 제트 추진 연구소가 지난주 말 발표한 분석에 따르면, 미국 노스다코타와 거의 같은 면적의 산림을 태운 캐나다 산불은 약 6억 4000만 톤의 이산화탄소를 방출한 것으로 추정됐다. 이 분석 결과는 '네이처' 저널에 발표됐다. 연구에 따르면 캐나다 산불로 배출된 탄소보다 많은 양을 배출한 나라는 중국, 미국, 인도뿐이었다. 3개국의 화석 연료 연소가 다른 국가를 압도하고 있는데, 캐나다 산불이 이에 버금갔다는 얘기다. 전 세계적인 탄소 배출로 인해 지구의 대기 중 온실가스 농도는 2023년에 인류 역사상 가장 높은 수준에 도달했다. 캐나다 산불은 2023년 5월에 발생해 기록적으로 높은 기온과 건조한 기상 조건으로 수개월 동안 꺼지지 않고 퍼지면서 캐나다 인근 전역에 걸쳐 맹위를 떨쳤다. 역대 최대 규모의 산불로 기록되기도 했다. 산불은 캐나다 브리티시 컬럼비아에서 노바스코샤까지 4500만 에이커 이상을 태웠다. 연기는 캐나다 전역으로 퍼져 국경 남쪽까지 도달했으며, 뉴욕을 비롯한 미국 대도시의 하늘을 노랑 또는 주황색으로 물들였다. 지역 주민들은 불길한 대기를 온몸으로 겪어야 했다. 캐나다에서 소방관 8명이 사망하고 수만 명이 대피했다. 나사는 연구에서 위성 관측과 슈퍼컴퓨터를 사용해 화재의 영향을 파악했다. 특히, 2017년부터 지구를 공전하고 있는 유럽우주국(ESA)의 센티넬 5P 위성에 부착된 대류권 관측 장비(TROPOspheric Monitoring Instrument)를 이용해 대기 중의 가스와 미세 입자를 측정하고 매핑할 수 있었다. 한편 기후 위기로 인해 급등하는 기온과 극심한 가뭄으로 인해 발생하는 산불의 빈도와 심각성은 날로 증가할 것으로 예상된다. 캐나다를 포함한 세계 북부 산림에 대한 위협은 심각하다는 지적이다. 산림은 일반적으로 주요 탄소 흡수원 역할을 하며, 일부에서는 특히 배출하는 탄소보다 더 많은 양을 대기 중에서 흡수한다. 그러나 미국 해양대기청(NOAA)은 극심해지는 산불로 탄소 흡수원으로서의 산림의 효과는 갈수록 약해지고 있다고 우려했다.
-
- 포커스온
-
[기후의 역습(50)] 작년 캐나다 산불, 인도 1년치 탄소 배출량과 맞먹어 '충격'
-
-
도요타·BMW, 전기차 대안 전략 수소 연료전지차 전면 제휴
- 일본 도요타자동차와 독일 BMW가 수소를 사용해 발전 시 이산화탄소를 내지 않는 연료전지차(FCV)로 전면 제휴키로 했다. 닛케이(日本經濟新聞)는 27일(현지시간) 양사가 다음달 3일 이 같은 내용의 전면 제휴를 위한 앙해각서(MOU)를 주고받은 뒤 5일로 예정된 BMW의 미디어 설명회에서 공식 발표할 예정이라고 보도했다. 전면 제휴를 통해 도요타가 수소탱크 등 기간부품을 공급하고, BMW가 수년 내 FCV 양산차를 내놓을 계획이다. FCV는 전기자동차(EV)에 비해 장거리 주행과 짧은 충전시간 등에서 우수하지만 급성장해온 EV의 성장둔화로 FCV가 재평가되는 계기가 될 가능성이 있다고 전문가들은 지적했다. 다만 차량과 수소 자체의 가격, 충전설비 부족이 여전히 보급에 과제가 되고 있다. 도요타는 지난 2014년 전세계에서 처음으로 양산FCV '미라이'를 출시했다. FCV는 수소와 산소의 화학반응으로 만든 전기로 움직인다. 발전 시 물만 나와 궁극의 친환경차로 불린다고 닛케이가 설명했다. 엔진에 해당하는 것은 모터로, 전력으로 구동하는 점은 전기자동차에 가깝다고 한다. 이번에 도요타는 BMW의 FCV용으로 수소탱크 외에 수소를 사용해 발전하는 '연료전지' 등 수소 관련 기간부품을 전면 공급한다. 구동 시스템 등 전기차 기술을 활용할 수 있는 영역은 BMW가 주체가 돼 다룬다. 전면 제휴에서는 BMW와 도요타가 유럽 내 수소 인프라 정비에 대해 협력 관계를 구축하는 것도 포함될 전망이다. 닛케이는 일본과 독일을 대표하는 두 자동차 회사의 전면 제휴에 대해 "판매가 감속하는 전기차 이외의 전략이 필요해지고 있어 차세대 친환경 자동차의 선택지로서 일본·유럽 대기업이 FCV에서 손을 잡는 것"이라고 분석했다. 도요타와 BMW는 2012년 6월부터 FCV에서 협업 관계에 맺었다. 다만 지금까지는 도요타 측에서 연료전지 부품을 공급할 뿐이었다. 수소탱크나 구동시스템 등은 BMW가 독자 개발하고 있었지만 앞으로 도요타의 수소 시스템을 전면적으로 도입함으로써 FCV 생산 비용을 절감하고 수년 내 판매 개시를 목표로 하고 있다.
-
- 포커스온
-
도요타·BMW, 전기차 대안 전략 수소 연료전지차 전면 제휴
-
-
[기후의 역습(46)] 태양 복사열의 미세한 변화, 지구 기후 대변혁 일으켰다
- 지구의 주요 열원인 태양 복사열의 지속적 감소가 약 100만 년 전 지구 기후의 재편을 일으켰다는 연구 결과가 나왔다. 지구에 도달하는 태양 복사의 누적된 미세한 변화가 지구의 빙하기를 변화시키는 주요 기후 변화를 촉발하는 데 큰 영향을 미쳤다는 증거가 발견됐다고 SCMP(사우스차이나모닝포스트)가 전했다. 복사는 빛으로 열이 전달되는 것으로 태양이 지구에 열을 전달하는 방식이다. 따라서 태양이 지구로 보내는 빛은 지구 표면에서 복사열 또는 복사 에너지로 지구의 기후에 절대적인 영향을 미치게 된다. 중국 과학아카데미(CAS) 지구환경연구소의 진장둥 박사 연구팀이 수행한 이 연구는 지난 200만 년 동안 지구의 기후를 조사한 것으로, 지구로 유입된 태양 복사가 어떻게 바다를 가열하거나 냉각시켜 기후 변화를 촉진시켰는지의 내막을 밝힌 것이다. 분석 결과 지구로 유입된 태양 복사량은 93만 5000년 전까지 지속적으로 감소했다. 이는 당시 차가운 해수면 온도의 직접적인 원인일 가능성이 높으며, 지구가 더 춥고 더운 기간 사이의 순환 방식을 변화시킨 중요한 과도기적 기후 전환기였다. 일사량이라고 불리는 지구에 유입되는 태양 복사는 지구 기후 시스템의 주요 열원 역할을 한다. 연구팀은 "우리는 누적된 일사량 교란(감소)이 지구 기후 시스템 내의 열 균형을 깨뜨려 플라이스토세(홍적세)의 장기 기후 변화에 영향을 미쳤다고 본다"고 말했다. 플라이스토세는 지구 지질 시대에서 기원전 260만 년부터 기원전 9700년까지 약 257만 년 동안의 시기로, 신생대 제4기의 대부분의 시기를 말한다. 플라이스토세 시대에는 세계 많은 지역에 빙상과 빙하가 광범위하게 반복적으로 형성됐는데, 이것이 당시의 냉각 때문이라는 것이다. 일사량은 기후 변화를 주도하는 것으로 알려져 있지만, 일사량이 장기 기후 변화에 미치는 영향은 여전히 미지의 영역이다. 일사량은 플라이스토세 동안 해수면 온도가 섭씨 2.3도 하락한 것을 포함, 장기적인 냉각 추세의 주요인으로는 간주되지 않았었다. 냉각 추세는 중기 플라이스토세 전환으로 이어졌는데, 이는 전 세계 빙하기 사이의 기간을 의미하는 빙하기 주기의 길이를 약 4만 1000년에서 10만 년으로 연장한 주요 기후 사건이었다. 한편 사이언스 저널에 실린 또 다른 논문에서 중국 연구팀은 지구에 도달하는 태양 복사열의 감소에 따른 누적된 영향이 바다의 열을 크게 낮춰 빙상이 성장하는 데 필요한 조건을 만들었다고 밝혔다. 연구팀은 장기적인 기후 변화에 미치는 일사량의 영향을 조사하기 위해 전 세계 해수면 온도에 대한 26개의 기록을 수집하고 일사량 이상치를 정량화할 수 있는 새로운 지수를 도입했다. 연구팀은 일사량의 변화는 작았지만, 지구로 유입되는 태양 복사선의 작은 변화조차도 바다의 열 함량을 변화시켜 열 균형에 영향을 미칠 수 있으며, 누적된 변화는 큰 열 불균형을 초래할 수 있다고 말했다. 지구 표면의 70% 이상을 덮고 있는 바다는 인간이 생성하는 열의 90% 이상을 흡수하는 주요 열 저장소다. 연구팀은 약 90만 년 전 일어난 '기후 시스템의 재편'으로 인해 지구상의 얼음 부피가 증가했다고 밝혔다. 연구팀은 "우리의 시뮬레이션 결과는 누적 일사량의 감소가 '냉각 사건'에 기여했음을 시사한다"고 말했다. 연구팀은 "대기 중 이산화탄소와 기타 측정치를 통합한 추가 시뮬레이션을 통해 장기적인 기후 추세에 대한 더 깊은 지식과 이해를 얻어야 할 것"이라고 지적했다.
-
- 포커스온
-
[기후의 역습(46)] 태양 복사열의 미세한 변화, 지구 기후 대변혁 일으켰다
-
-
[기후의 역습(44)] 원핵생물, 기후 변화로 바다 지배 가능성 제기
- 기후 변화로 인해 바다 생태계 균형이 위협받고 있다. 바다는 인간의 눈에는 보이지 않는 미세한 유기체의 서식지다. '원핵생물'이라고 알려진 미생물은 세계 바다 생명체의 30%를 차지한다. 원핵생물은 바다의 생태계 균형을 유지하는 데 중요한 역할을 하지만, 기후 변화로 인해 그 균형이 흔들릴 위기에 처해 있다고 라이브사이언스가 전했다. 원핵생물이 기후 변화에 놀라울 정도로 회복력이 강하며, 해양을 지배할 수 있다는 것이다. 원핵생물에는 박테리아와 단세포 유기체인 '고균'이 모두 포함된다. 이 유기체는 지구상에서 가장 오래된 세포 기반 생명체로, 이들은 열대 지방에서 극지방에 이르기까지 육지와 물에 걸쳐 지구 전체에서 번성한다. 원핵생물은 크기가 작지만 엄청난 양으로 작은 크기를 상쇄한다. 전 세계적으로 인간 1인당 약 2톤의 해양 원핵생물이 존재한다. 원핵생물은 세계 식량 사슬에서 중요한 역할을 하며, 인간이 식용하는 물고기에 영양소를 공급한다. 해양 원핵생물은 매우 빠르게 성장하는데, 이 과정에서 많은 탄소가 배출된다. 200m 깊이의 해양에 서식하는 원핵생물은 1년에 약 200억 톤의 탄소를 배출한다. 이는 인간의 두 배에 해당한다. 이 엄청난 탄소 배출은 식물 플랑크톤에 의해 균형을 이룬다. 식물 플랑크톤은 또 다른 미세한 유기체로, 광합성을 통해 햇빛과 이산화탄소를 에너지로 전환한다. 이 과정에서 탄소를 흡수한다. 식물 플랑크톤과 기타 해양 순환은 인간이 매년 대기 중으로 방출하는 탄소의 최대 3분의 1을 흡수한다. 이는 지구 온난화의 속도를 제한하는 데 도움이 된다. 원핵생물이 온난화에 어떻게 반응하는지는 기후 변화의 현 상황에서 세계 해양의 미세한 균형이 어떻게 변할 수 있는지를 이해하는 데 중요하다. 최근의 연구 결과에 따르면 원핵생물은 다른 해양 생물에 비해 기후 변화에 회복력이 월등히 강하며, 결국 기후 변화의 승자가 될 가능성이 높다. 해양 온난화가 섭씨 1도 올라갈 때마다 미생물 바이오매스는 약 1.5% 감소한다. 이는 대형 플랑크톤, 어류 및 포유류에 대해 예측한 3~5% 감소의 절반에도 미치지 못한다. 이는 기후 변화가 지속될 경우, 미래의 해양 생태계 전반의 바이오매스는 낮아지고 원핵생물이 점점 더 지배적인 위치를 차지하게 됨을 의미한다. 다시 말하면, 이는 이용 가능한 영양소와 에너지가 원핵생물 쪽으로 편향돼 대형 어류의 에너지 공급원이 줄어든다는 뜻이다. 인간이 식량으로 의존하는 물고기의 개체수가 줄어들 가능성이 높아지고, 바다가 탄소 배출을 흡수하는 능력이 줄어든다. 연구에 따르면 온난화가 섭씨 1도 증가할 때마다 세계 해양의 상위 200m에 있는 원핵생물은 매년 추가로 8억 톤의 탄소를 생산할 것으로 예측된다. 이는 현재 유럽연합 전체의 배출량과 동일하다. 기후 변화로 인해 지구 해양은 금세기 말까지 섭씨 1~3도 정도 올라갈 것으로 예상된다. 원핵생물이 생산하는 탄소량이 예상대로 증가하면 해양이 인간의 탄소 배출을 흡수할 수 있는 능력이 감소하게 된다. 즉, 탄소 순 제로 배출의 달성은 요원하게 된다. 게다가 기후 변화로 인한 세계 어류 자원 감소에 대한 지금까지의 예측은 원핵생물이 바다를 지배해 해양 먹이 사슬을 어떻게 재구조화할 수 있는지는 고려하지 않는다. 결국, 예측 이상으로 어류 자원이 급감할 수 있다. 어류 개체수 감소는 세계 식량 공급에 큰 문제를 야기한다. 바다는 약 30억 명의 인구에 대한 단백질 공급원이다. 원핵생물이 새로운 환경에 얼마나 빨리 적응하고 진화할지는 불확실하다. 그러나 기존의 연구에서도 박테리아는 몇 주 만에 스스로 환경 저항력을 강화하는 능력이 있음을 보여줬다. 원핵생물과 기후 변화의 상관관계에 대한 연구가 더 필요하다는 지적이다.
-
- 포커스온
-
[기후의 역습(44)] 원핵생물, 기후 변화로 바다 지배 가능성 제기
-
-
[기후의 역습(43)] 오래된 나무, 탄소 흡수 가속화…숲 보존 중요성 강조
- 오래된 나무가 많은 숲이 이산화탄소를 더 많이 흡수하고 저장한다는 연구 결과가 나왔다. 영국 버밍엄 대학교 연구팀은 오래된 나무가 지구 온난화 주범인 이산화탄소 흡수 속도를 높일 수 있다는 연구 결과를 발표했다고 BBC가 전했다. 연구팀은 오래된 참나무(오크나무) 숲을 7년 동안 높은 수준의 이산화탄소를 노출시킨 결과, 나무들이 목재 생산량을 늘려 온실가스를 흡수하고 지구 온난화를 방지하는 효과를 확인했다. 이번 연구는 기후 변화 대응을 위한 오래된 나무들이 있는 숲을 보호하고 유지하는 것의 중요성을 보여준다. 현재 전세계적으로 6초마다 축구장 면적의 숲이 사라지고 있는 것으로 추정된다. 연구 공동 저자인 롭 맥켄지는 "이번 연구는 오래된 숲이 우리에게 엄청난 역할을 하고 있음을 보여주눈 희망적인 증거"라며 기존 숲을 신중하게 관리해야 하며 절대 벌목해서는 안 된다"고 강조했다. 이번 연구 결과는 버밍엄 대학교의 대규모 '대기 이산화탄소 농축(FACE)' 실험에서 나왔다. FACE 실험은 2016년부터 진행 중이며, 52에이커(약 6만3600평) 규모의 스태퍼드셔 숲에서 기후 변화가 산림에 미치는 영향을 실시간으로 파악하는 것을 목표로 한다. 52에이커는 축구장 약 30개를 합친 넓이에 해당한다. 연구팀은 180년 된 영국 오크나무 숲에 약 40m 높이의 파이프 라인을 설치하고 매일 온실 가스인 이산화탄소를 배출해 나무의 변화를 관찰했다. 7년간의 모니터링 결과 오크나무는 이산화탄소 농도 증가에 따라 생산성이 향상됐다. 즉 목재 생산량이 약 10% 증가해 이산화탄소를 장기간 흡수하고 대기 온난화를 방지하는 효과를 보였다. 나무는 이산화탄소를 흡수해 새로운 잎, 뿌리 또는 바이오매스를 생산하는 데 사용한다. 잎과 뿌리는 상대적으로 짧은 기간 동안 탄소를 저장하지만, 이번 연구에서는 대부분의 이산화탄소가 수십년 동안 저장될 수 있는 형태로 변환되었음을 확인했다. 연구 결과는 학술지 '네이처 기후 변화(Nature Climate Change)'에 게재됐다.
-
- IT/바이오
-
[기후의 역습(43)] 오래된 나무, 탄소 흡수 가속화…숲 보존 중요성 강조
-
-
[기후의 역습(42)] 화산 폭발, 엄청난 탄소 방출로 온난화 촉발…생물 대량 멸종 초래도
- 자연은 종종 인류의 시급한 과제에 대한 해결책을 제시해 준다. 지구의 지질학적 역사도 마찬가지로 지구 온난화를 이해할 수 있는 정보와 장기적인 통찰력을 제공한다. 지구 역사를 통틀어 재앙을 몰고 온 대규모의 화산 폭발은 대기와 해양에 막대한 양의 탄소를 방출했다. 지구과학 소식을 전하는 어스닷컴은 화산의 엄청난 탄소 방출은 급격한 기후 온난화를 촉발해 육지와 해양 생태계의 대량 멸종으로 이어졌다고 전했다. 나아가 이러한 강력한 화산 활동 기간은 수백만 년 동안 지구의 ‘탄소 및 기후 조절 시스템’을 혼란에 빠뜨렸으며 지구 환경에 지속적인 영향을 미쳤을 가능성이 높다는 지적이다. 이는 취리히 연방 공과대학교(ETH 취리히)의 환경 과학자팀이 진행한 최근 연구 결과다. 연구팀은 지구 역사상 주요 기후 변화에 직면했던 식물이 어떻게 반응하고 진화했는지를 분석했다. 또 이러한 변화가 지구의 자연적 탄소-기후 조절 시스템에 어떤 영향을 미쳤는지도 조사했다. 연구 결과는 사이언스 저널 최신호에 실렸다. 연구팀은 고대 퇴적물에서 발견된 동위원소에 대해 화학적 분석을 수행하는 한편, 분석 데이터를 지구의 지질학적 기후 체계를 조절하는 식물의 역할을 통합해 설계한 모델과 비교했다. 팀은 이 모델을 사용해 화산 활동으로 인한 강력한 탄소 방출에 지구 시스템이 어떻게 반응하는지도 시뮬레이션했다. 팀이 초점을 맞춘 시기는 약 2억 5200만 년 전 페름기-트라이아스기 ‘시베리아 트랩(Siberian Traps)’ 대량 멸종을 포함해 지구 지질학적 역사상 세 가지 중요한 기후 변화였다. 시베리아 트랩은 러시아의 초거대 현무암질 용암지대로, 거대 화산의 분화로 인해 엄청난 양의 용암과 화산재를 지표면에 뿌렸고 이로 인해 생물체가 대량으로 사멸했다고 한다. ETH 취리히의 타라스 게리아 교수는 "시베리아 트랩 형성기 20만 년 동안 약 4만기가톤(Gt)의 탄소를 방출했고, 그 결과 지구 평균 기온이 섭씨 5~10도 상승하면서, 기록상 지구에서 가장 심각한 멸종 사건이 발생했다"고 설명했다. 생물이 온도 상승에 적응하지 못하면서 급속한 생태계 파괴로 이어졌던 것. 연구팀원인 ETH 취리히의 줄리안 로거 박사는 "시베리아 트랩과 같은 재앙적인 사건이 터지면 식물이 원상회복되는 데 수백만 년이 걸릴 수 있다. 장기간 지구의 탄소-기후 조절 시스템은 심각하게 약화되고 비효율화돼 장기적인 기후 온난화가 초래된다"고 설명했다. 재앙적인 화산 폭발의 심각성은 방출된 탄소가 얼마나 빨리 지구 내부로 다시 격리될 수 있는지에 따라 결정된다. 탄소의 격리는 규산염 광물 풍화나 유기 탄소 생성 등의 메커니즘을 통해 발생하며, 이 과정을 통해 탄소는 대기에서 효과적으로 제거된다. 연구에 따르면 화산 폭발 후 기후가 안정화되고 새로운 평형 상태에 도달하는 데 걸리는 시간은 식물이 온난화에 얼마나 빨리 적응할 수 있는지에 크게 좌우된다. 일부 식물 종은 더 시원한 지역으로 이동하는 방법을 택했지만 많은 경우 화산 폭발은 너무나 치명적이어서 식물 종은 지속적인 온도 상승에 적응할 시간이 충분하지 않았고 멸종의 길을 걸었다. 연구 결과는 현시대 인간이 유발한 기후 위기에 중대한 시사점을 보여준다. 연구에 따르면 식물의 교란은 화산 폭발과 같은 지질학적 변화와 마찬가지로 기후 온난화를 장기화하고 심화시킬 수 있다. 실제로 지구의 탄소 순환을 조절하는 식물의 능력이 떨어져 기후가 안정적인 평형을 이루는데 수백만 년이 걸린 사례도 있다. 연구팀은 지구가 글로벌 기후 위기에 처해 있다고 경고하면서 "이전의 어떤 화산 활동보다 더 빠른 속도로 온실가스를 방출하고 있다. 연구 결과는 갑작스러운 기후 변화에서 원상으로 회복하는데 기여하는 식물의 역할을 보여준다. 그런데 전 세계적으로 산림 벌채가 중단되지 않아 자연 생태계가 기후를 조절하는 능력을 잃고 있다"고 경고했다.
-
- 포커스온
-
[기후의 역습(42)] 화산 폭발, 엄청난 탄소 방출로 온난화 촉발…생물 대량 멸종 초래도
-
-
[기후의 역습(39)] 그린란드 빙상서 화석 발견…빙하 상실로 해수면 상승 위험 증가
- 그린란드 빙상은 과거에도 녹았었지만 기후가 따뜻해짐에 따라 앞으로는 더 빠른 속도로 녹을 것으로 보인다. 과학자들은 이로 인해 해수면이 6~7.6m까지 상승할 수 있다고 경고한다. 그런 가운데, 지난 110만 년 동안 한 때 따뜻한 시기에 그린란드의 거대 빙하 가장자리가 아닌 중심부가 녹아 내렸고, 다양한 곤충과 식물의 서식지였던 건조하고 척박했던 툰드라 지형이 바뀌었다는 새로운 연구 결과가 나와 주목된다고 CBS뉴스가 보도했다. 이 연구 결과는 미국 국립과학원 회보에 게재됐다. 빙하가 처음 녹기 시작했을 때 대기 중 온실 가스 농도는 오늘날보다 낮았다. 과학자들은 대기 중 이산화탄소가 더 많이 발생하면서 그린란드의 빙하가 이전에 생각했던 것보다 더 쉽게 녹을 것으로 우려하고 있다. 새로운 연구를 공동으로 수행한 버몬트 대학교의 폴 비어먼 박사팀은 "그린란드는 270만 년 동안 빙하가 존재해 왔지만, 이제 그 빙하가 취약해져 깨질 수 있다는 증거가 나왔다"고 밝혔다. 연구팀은 2014년부터 그린란드 빙상 아래에서 다양한 물질을 수집해 연구를 진행해 왔다. 그들은 거의 30년 전, 빙하의 중심부 표면 아래 3.2km 떨어진 곳에서 추출한 GISP2라고 불리는 빙핵 바닥의 퇴적물을 조사했다. 분석 결과 퇴적물 샘플에는 그린란드의 과거에 대한 정보와 단서들로 가득 차 있었다. 현미경으로 들여다 본 샘플의 작은 검은 반점에서는 곤충의 눈, 북극 양귀비 씨앗, 북극 버드나무 조각, 토양 곰팡이와 이끼의 작은 부분들이 발견됐다. 이들은 여러 화석들로, 비어먼은 이를 "얼음 아래에 얼어붙은 생물 생태계"라고 불렀다. 이 화석은 빙하의 90%가 한때 사라졌었다는 것을 직접적으로 확인해 준다고 한다. 비어먼은 "일단 빙상의 중심을 잃게 되면 모든 것을 잃게 되는데, 빙상의 중심에서 이 화석들을 발견한 것은 그린란드의 얼음이 과거에 사라졌었다는 명백한 증거"라고 말했다. 이 발견은 이른바 '취약한 그린란드'라는 가설을 뒷받침한다. 비어먼은 인간의 영향을 받지 않는 자연이 빙하가 형성된 이후 적어도 한 번은 녹은 적이 있다고 말했다. 65만6000평방마일의 그린란드 빙하는 현재 섬 전체의 약 80%를 덮고 있다. 이는 미국 텍사스주의 약 3배에 달하는 면적이다. 그린란드의 얼음 손실을 지도로 만든 나사(NASA)는 이 빙하가 지난 몇 년 동안 빠르게 감소했으며, 이로 인해 지구 해수면이 연간 약 0.03인치(약 0.0762cm) 상승했다고 밝혔다. 비어먼에 따르면 그린란드의 녹는 얼음은 현재 해수면 상승의 첫번째 주요 원인이다. 비어먼은 그린란드 얼음 전체가 녹기까지는 수천 년이 걸릴 수 있지만, 그 결과는 매우 끔찍할 것이라고 경고했다. 수억 명의 사람들이 집과 사업을 잃을 수 있고, 유서 깊거나 아름다운 도시를 포함해 엄청난 면적의 땅이 사라질 수 있다는 것이다.
-
- 포커스온
-
[기후의 역습(39)] 그린란드 빙상서 화석 발견…빙하 상실로 해수면 상승 위험 증가
-
-
[기후의 역습(35)] 대서양 해류 흐름, 둔화 조짐…기후변화 영향 우려
- 북유럽은 지구상에서의 위도를 고려할 때 상대적으로 따뜻하다. 예를 들어, 런던만 해도 벤쿠버 등 대부분의 캐나다 주요 도시들보다 북쪽에 있지만 더 따뜻하다. 그러나 이 따뜻함은 지구 온난화로 인해 금세기 말에는 사라질 수도 있다고 PHYS가 전했다. 이는 멕시코만에서 노르웨이 스발바르까지 이어지는 핵심 난류인 대서양 자오선 역전 순환류(AMOC)의 흐름이 멎을 가능성이 있기 때문이다. 현재 AMOC는 엄청난 양의 따뜻한 바닷물을 북대서양으로 운반한다. 그곳에서 식은 물은 가라앉고 흐름의 방향을 급격하게 바꾸어 그린란드의 동쪽 해안을 지나 남대서양으로 이동한다. 여기서 따뜻해진 물은 다시 북대서양을 향하고 그 과정이 반복되는 것이다. 그 과정에서 방출되는 열은 북유럽의 항구가 얼지 않도록 한다. 지구 온난화로 인해 염분이 많은 북동쪽 AMOC는 녹는 북극의 차가운 담수와 섞이고, 지구 온난화의 특징적인 강우량 증가까지 가세한다. 이 담수는 해류의 밀도와 염도를 감소시키기 때문에 북대서양에서의 냉각 및 가라앉는 현상이 감소하고, 연쇄 작용으로 남쪽으로의 흐름도 둔화된다. 지난 1995년 기후 모델 전문가들은 AMOC의 순환이 2200년까지 멈출 것이라고 예측했다. 관측은 2004년부터 가능했고, 실제로 AMOC의 일부는 느려지고 있는 것으로 나타났다. 그러나 지금까지 기후 모델은 AMOC의 많은 하천과 회돌이, 바다로의 유입물 등을 포괄해서 AMOC를 자세히 관찰하기 어려웠다. 그러나 최근 AMOC를 상세히 들여다 볼 수 있는 기후 모델이 등장했다. 기후 전문가들은 이를 사용해 과거에는 볼 수 없었던 세부 정보를 찾으면서, AMOC의 미래를 더 정확히 예측할 수 있게 됐다. 새 모델을 적용한 결과, AMOC는 어떤 지역에서는 갑자기 흐름이 끊기고 또 다른 지역에서는 예상치 못하게 증가했다. 관측 및 연구 결과는 '미국물리학회지(Physical Review Letters)'에 실렸다. 기후 변화 예측을 위해 종래 사용됐던 대규모 지구 기후 모델은 육지와 바다를 위도와 경도 1도씩, 100km x 100km 격자로 나누었다. 이는 저해상도 모델로서 더 작은 물리적 특징을 놓칠 수 있다. 그러나 새로운 모델은 고해상도로서 격자를 0.1도, 17km로 대폭 줄였다. 개발된 모델은 '커뮤니티 지구 시스템 모델(Community Earth System Model)'로 명명됐다. 로만(Lohmann) 연구팀은 이 모델을 이용, IPCC(세계기상기구)가 제시한 시나리오인 "이산화탄소가 한 세기 동안 빠르게 증가해 2100년에는 약 1250ppm 수준이 될 것"이라는 가정 아래 AMOC 분석을 진행했다. 연구 결과, 고해상도 및 저해상도 모델 모두 AMOC가 전반적으로 둔화돼 2000년에서 2100년 사이에 초당 약 800만 입방미터의 물이 감소했다. 현재 AMOC의 유량은 초당 약 1500만~2000만 입방미터의 물로 초당 약 130억 줄의 에너지를 운반한다. 그러나 더 작은 지역에서 AMOC의 일부는 갑자기 붕괴되었고 다른 부분은 시간이 지남에 따라 더욱 강화되기도 했다. 연구를 주도한 로만은 "고해상도 기후 모델에 따르면 극심한 온실가스 배출의 경우, 일부 지역에서 AMOC가 급격히 감소하는 반면 북극에서는 반대로 증가할 수 있음을 보여준다"면서 "이 예상치 못한 지역적 강화는 AMOC 활동의 전반적인 약화 추세와 상관 없이 발생한다"고 밝혔다. 물론 전체적으로 AMOC의 유량이 급속히 줄어드는 것은 변함이 없다. 고해상도 기후 모델은 또한 새로운 티핑포인트(전환점)를 보여주고 있다. 티핑포인트는 상황이 급속히 변하는 일종의 임계점이다. 얼음이 물로 변하는 것과 같이 한 상태에서 다른 상태로 갑자기 변할 시점을 말한다. 기후 시스템에도 티핑포인트가 있다. 예를 들어 그린란드 빙상의 연구에서는 지구 온난화가 섭씨 2.5도에 달할 때 빙하가 녹는 사태가 일어날 것으로 추정했다. 티핑포인트에 도달하면 전체 빙상이 녹는 것은 불가피할 수 있다. 연구팀은 이번 고해상도 기후 모델 분석에서 AMOC에도 과거에 나타나지 않았던 티핑포인트가 있다는 사실을 밝혔다. 티핑포인트가 되면 극지방 빙하가 녹다가 어느 시점이 되면 완전히 붕괴될 수 있듯이, 서서히 둔화되던 흐름이 완전히 멈출 수 있다는 것이다. 그렇게 되면 지구는 회복하기 어려운 상태로 전락하게 될 것이다.
-
- 포커스온
-
[기후의 역습(35)] 대서양 해류 흐름, 둔화 조짐…기후변화 영향 우려
-
-
[기후의 역습(32)] NASA, 미국 탄소 배출량 실태 보여주는 위성사진 공개
- 나사(NASA)가 지구에서 엄청난 양의 이산화탄소가 발생해 대기 중에서 소용돌이치며 움직이는 모습을 보여주는 새로운 영상 자료를 공개했다고 전문 매체 퓨처리즘이 전했다. 이 영상은 2020년 1월부터 3월까지 바람과 대기 순환에 따라 지구 전체로 이동하는 이산화탄소의 농도를 보여주고 있다. 영상에서는 특히 미국에서의 이산화탄소 발생이 많아, 미국이 이산화탄소의 주요 배출원임을 드러내고 있다. 2021년에 미국은 전 세계 배출량의 12% 이상을 차지했으며, 33%에 약간 못 미치는 중국에 이어 두 번째를 기록했다. 나사가 공개한 영상 데이터의 세부적인 이산화탄소 흐름은 놀라운 고화질 수준이다. 발전소, 화재, 도시에서 발생하는 이산화탄소 배출은 물론 이것이 대륙과 바다로 확산되는 모습이 그대로 나타난다. 전문가들은 이 영상 데이터를 활용해 인간 활동에서 비롯된 기후 변화에 직접적으로 영향을 미치는 온실가스의 주요 출처를 식별하는 것 외에도 이러한 다양한 출처가 어떻게 상호 작용하는지를 연구할 수 있다고 지적했다. 나사의 고다드 우주비행센터 기후 과학자 레슬리 오트는 "정책 입안자이자 과학자로서 우리는 탄소가 어디에서 나오는지, 그리고 그것이 지구에 어떤 영향을 미치는지 파악하려고 노력하고 있다“면서 ”이 영상을 통해 이산화탄소가 다양한 기상 패턴에 의해 어떻게 상호 연결되어 있는지 알 수 있다"고 설명했다. 미국과 중국의 경우 중공업, 발전소, 자동차, 트럭 등 인간이 주도하는 활동이 여전히 이산화탄소 배출의 중요한 원인이다. 나사에 따르면 아프리카와 남미에서는 토지 관리 및 산림 벌채를 위해 일부러 일으키는 화재가 이산화탄소 발생의 주요 원인이다. 이 영상 데이터는 시간이 따라 불길이 잦아들고 불타오르는 듯한 매혹적인 패턴의 이산화탄소 방출 및 확산을 보여주고 있다. 식물과 나무도 광합성을 할 때 이산화탄소를 흡수하고 호흡할 때 이를 방출하는 시각적 효과의 역할을 담당한다. 나사는 고다드 지구 관측 시스템(GEOS)이라는 슈퍼컴퓨터 기반 모델을 사용하여 시각 영상을 만들었다. 나사에 따르면 이 기상 모델의 해상도는 일반 기상 모델보다 100배 이상 크다고 밝혔다. 영상은 특히 과학자들에게 전례 없는 모습을 보여주고 있다. 오트는 "이제는 말 할 수 있다. 우리는 정밀 고해상도로 이산화탄소의 발생과 흐름을 따라다니며 지켜볼 수 있다“라며 "종래의 기상 영상 시뮬레이션으로는 결코 볼 수 없었던 것들을 보게 됐다”고 말했다. 이산화탄소의 흐름이 얼마나 지속되는지, 기상 시스템과 어떻게 상호 작용하는지를 보는 것은 놀라운 결과라는 지적이다.
-
- IT/바이오
-
[기후의 역습(32)] NASA, 미국 탄소 배출량 실태 보여주는 위성사진 공개
-
-
[퓨처 Eyes(44)] 바다를 이용한 탄소 포집, 지구 온난화 해결의 새로운 희망
- 지구 온난화 문제가 심화되는 가운데, 바다의 이산화탄소 제거 기술을 모방한 혁신적인 탄소 포집 기술이 개발돼 주목받고 있다. 탄소 포집 기술은 대기 중의 이산화탄소를 포집하여 저장하거나 활용하는 기술로, 지구 온난화의 주범인 이산화탄소 배출량을 줄이는 데 중요한 역할을 한다. 해양의 탄소 흡수 방식을 모방한 탄소 직접 제거(CDR) 기술을 선도하는 에쿼틱 테크놀로지(Equatic Technology)는 캐나다 퀘벡주에 세계 최대 규모의 CDR 플랜트를 건설 중이다. 이 플랜트는 연간 10만 9500톤의 이산화탄소를 처리하고 3600톤의 녹색 수소를 생산할 예정이며, 이는 CDR 기술을 상업적 규모로 구현한 최초의 사례로 평가받는다고 비즈니스 인사이더가 전했다. CDR 기술은 대기 중 탄소를 직접 제거하는 기술로, 탄소 포집 기술 중 하나이다. 미국 UCLA 연구팀이 설립한 스타트업인 에쿼틱 테크놀로지는 로스앤젤레스와 싱가포르에서 이미 시범 공장을 운영하며 기술력을 입증한 바 있다. 이들의 핵심 기술은 바닷물에 전류를 흘려 탄소를 고체 형태로 저장하고, 부산물로 생성되는 녹색 수소를 판매하거나 시설 운영에 활용하는 것이다. 이 기술은 전기화학적 과정을 통해 이산화탄소를 탄산염 광물로 변환하여 영구적으로 저장하는 방식이다. 이는 탄소를 제거하는 동시에 에너지원을 생산하는 친환경적인 접근 방식으로, 지구 온난화 완화와 에너지 문제 해결에 동시에 기여할 수 있다. 바다, 매년 25% 탄소 제거 바다는 인간이 배출한 탄소를 가장 많이 흡수하는 곳 중 하나로, 매년 배출되는 탄소의 최대 25%를 제거한다. 바다는 대기 중 이산화탄소를 흡수하여 해양 생물의 광합성에 활용하거나 심해에 저장하는 역할을 한다. 연구에 따르면 바다가 탄소를 흡수하는 과정을 복제하면 지구 대기에서 수십억 톤의 이산화탄소를 제거하는 데 도움이 될 수 있다. 세계은행에 따르면 2020년 전 세계 평균 이산화탄소 배출량은 1인당 4.3메트릭톤(9500파운드, 약 4309kg)이었다. 인간 활동으로 인한 이산화탄소 배출량 증가는 지구 온난화를 가속화시키는 주요 원인이다. 온실가스를 줄이는 것만으로는 지구 온난화를 더 이상 막을 수 없기 때문에 탄소 포집과 저장은 기후 변화를 완화하는 중요한 도구가 될 수 있다. 탄소 제거 비용 톤당 100달러 목표 탄소 포집 및 저장(CCS) 기술은 발전소나 산업 시설에서 발생하는 이산화탄소를 포집하여 지하 깊은 곳에 저장하는 기술이다. 에쿼틱의 퀘벡 플랜트는 바닷물에 전류를 흘려 물을 수소와 산소로 분리하고, 이 과정에서 생산된 산과 염기를 통해 탄소를 고체 형태로 저장한다. 이때 생성된 약알칼리성 슬러리는 냉각탑을 통해 대기 중 탄소를 추가로 흡수하는 데 사용된다. 이러한 과정을 통해 대기 중 이산화탄소 농도를 낮추고, 지구 온난화를 완화하는 효과를 기대할 수 있다. 에쿼틱 테크놀로지는 싱가포르에도 대규모 공장을 건설 중이다. 싱가포르 공장은 해수 담수화 플랜트에서 얻은 고농도 염수를 전해질로 사용해 전기 분해를 통해 산소와 수소를 생성하고, 탄소는 단단한 미네랄 형태로 저장한다. 이는 용존 및 대기 중 이산화탄소를 최소 1만 년 이상 안전하게 저장하며, 바다의 자연적인 탄소 저장 능력을 활성화하고 확장하는 효과를 가져온다. 에쿼틱 테크놀로지는 탄소 제거 비용을 톤당 100달러까지 낮추는 것을 목표로 한다. 이는 수소 판매를 통한 수익 창출로 가능할 것으로 예상되며, 대규모 탄소 제거를 현실화하고 지구 온난화 문제 해결에 기여할 수 있는 혁신적인 접근 방법이다. 탄소 제거 비용 절감은 탄소 포집 기술의 상용화를 위한 중요한 과제이다. 현재 탄소 제거 비용은 가장 비싼 기술인 직접 공기 포집(DAC)이 톤당 200~700달러가 소요된다. 반면, 생물 에너지 탄소 포집 및 저장(BECCS)은 톤당 15~80달러로 비교적 저렴한 편이다. 직접 공기 포집(DAC)은 대기 중 이산화탄소를 직접 포집하는 기술이며, 생물 에너지 탄소 포집 및 저장(BECCS)은 바이오매스 에너지 생산 과정에서 발생하는 이산화탄소를 포집하여 저장하는 기술이다. 해양 생태계 영향 추가 연구 필요 물론 대규모 탄소 제거 기술이 해양 생물에 미칠 수 있는 영향에 대한 우려도 존재한다. 하지만 에쿼틱 테크놀로지는 해수 필터 설치와 엄격한 국제 표준 준수를 통해 해양 생태계에 미치는 영향을 최소화하고, 탄소 제거량을 투명하게 측정할 계획이다. 탄소 포집 기술의 환경 영향 평가는 기술 개발 과정에서 반드시 고려해야 할 중요한 요소이다. 에쿼틱의 혁신적인 해양 탄소 포집 기술은 지구 온난화 문제 해결에 새로운 지평을 열고, 지속 가능한 미래를 위한 중요한 발걸음이 될 것으로 기대된다. 탄소 포집 기술의 발전은 기후 변화 대응에 있어서 중요한 역할을 할 것이며, 에쿼틱 테크놀로지의 노력은 이러한 변화의 선두에 있다.
-
- 포커스온
-
[퓨처 Eyes(44)] 바다를 이용한 탄소 포집, 지구 온난화 해결의 새로운 희망
-
-
[신소재 신기술(78)] 유기 태양 전지 패널, 햇빛 20% 전기 변환 성공…실리콘 대체 가능성 높여
- 미국 과학자들이 새로운 유기 태양 전지 패널을 개발해 햇빛의 20%를 전기로 변환하는 데 성공했다. 유기 태양 전지판(Organic Solar Cell)은 빛을 흡수해 전기를 생산하는 태양 전지의 한 종류다. 기존의 실리콘 태양 전지판과 달리 탄소 기반의 유기 반도체 물질을 사용해 제작된다. 캔사스대학교 연구진이 유기 반도체에 햇빛의 20%를 전기로 변환해, 태양 에너지 분야에 혁신을 가져올 수 있는 가능성을 제시했다고 인터레스팅엔지니어링이 보도했다. 수년 동안 실리콘은 태양 에너지 환경을 지배해왔다. 실리콘의 효율성과 내구성 덕분에 태양광 패널에 가장 많이 사용하는 소재가 된 것. 하지만 실리콘 기반 태양전지는 딱딱하고 생산 비용이 비싸서 곡면에 적용하는 데 한계가 있었다. 유기 반도체는 실리콘 태양 전지 패널보다 저렴하고 유연하며, 다양한 색상과 투명도를 구현할 수 있어 차세대 태양 전지 소재로 주목받고 있다. 유기 태양 전지판은 얇고 가벼우며, 플라스틱 기판 등 다양한 소재에 적용할 수 있어 곡면이나 불규칙한 표면에도 설치가 가능하다. 게다가 유기 물질은 실리콘보다 독성이 적고 재활용이 용이해 환경 친화적이다. 유기 반도체는 이미 휴대전화, TV, 가상현실(VR)헤드셋과 같은 가전제품의 디스플레이 패널에 사용되지만 상업용 태양광 패널에는 아직 널리 사용되지 않는다. 유기 반도체인 탄소 기반 소재는 더 낮은 비용과 더 큰 유연성으로 실행가능한 대안을 제공한다. 하지만 지금까지는 빛을 전기로 변환하는 효율성이 낮아 실리콘 태양 전지 패널을 대체하기 어렵다는 한계가 있었다. 연구를 주도한 캔자스 대학교의 물리학 및 천문학 부교수인 와이런 챈 박사는 "이러한 재료는 벽에 페인트를 칠하는 것처럼 용약 기반 방법을 사용해 임의의 표면에 코팅할 수 있기 때문에 태양광 패널의 생산 비용을 잠재적으로 출 수 있다"고 설명했다. 이러한 유기 반도체는 단순히 비용 절감에만 그치지 않는다. 특정 파장의 빛을 흡수하도록 조정할 수 있어 새로운 가능성을 열어준다. 챈은 "이러한 특성 덕분에 유기 태양 전지 패널은 차세대 친환경적이고 지속 가능한 건물에 사용하기에 특히 적합하다"고 덧붙였다. 이번 연구는 유기 반도체의 일종인 비풀러렌 악셉터(NFA)의 높은 효율성에 대한 의문에서 시작됐다. 연구진은 NFA가 기존 유기 반도체보다 뛰어난 성능을 보이는 이유를 규명하는 과정에서 예상치 못한 현상을 발견했다. 특정 조건에서 NFA의 전자가 에너지를 잃는 대신 주변 환경으로부터 에너지를 얻는 현상을 관찰한 것이다. 이는 뜨거운 커피가 주변으로 열을 잃는 것과는 반대되는 현상으로 양자역학과 열역학의 결합으로 설명될 수 있었다. 연구진은 첨단 기술인 시간 분해 이광자 광전자 분해법을 활용해 1조분의 1초보다 짧은 시간 동안 전자의 에너지 변화에 추적했다. 그 결과 NFA의 전자가 양자역학적 특성으로 인해 여러 분자에 동시에 존재하는 것처럼 보이며, 이러한 현상이 열역학 제2법칙과 결합해 열흐름의 방향을 역전시키는 것을 확인했다. 이러한 역전된 열 흐름은 NFA의 전자가 주변 환경으로부터 에너지를 흡수하고 전하 분리 과정을 촉진해 전류 생성 효율을 높이는 데 기여한다. 연구진은 이번 발견이 태양 전지 효율을 20%까지 끌어올려 실리콘 태양 전지와의 격차를 좁히는 데 중요한 역할을 할 것으로 기대하고 있다. 또한 이러한 에너지 획득 메커니즘은 태양 전지 뿐만 아니라 이산화탄소를 유기 연료로 변환하는 광촉매 등 다른 재생 에너지 분야에도 적용될 수 있을 것으로 전망했다. 이는 유기 반도체 기반 기술의 잠재력을 극대화하고, 지속가능한 에너지 시스템 구축에 기여할 수 있는 중요한 발견으로 평가된다. 이번 연구는 '어드밴스드 머티리얼스(Advanced Materials)' 저널에 게재됐다.
-
- 포커스온
-
[신소재 신기술(78)] 유기 태양 전지 패널, 햇빛 20% 전기 변환 성공…실리콘 대체 가능성 높여
-
-
[신소재 신기술(74)] 탄소 포집·저장 6배 높인 '하이드레이트'
- 대기에서 포집한 이산화탄소(CO₂)를 6배나 빠르게 저장하는 새로운 하이드레이트 기술이 개발됐다. 미국 텍사스대학교 오스틴 캠퍼스 연구진이 개발한 새로운 대기 중 탄소 포집 하이드레이트 기술은 기존 방식보다 약 6배 빠른 속도로, 유해 화학 촉진제 없이 탄소를 저장할 수 있다고 테크익스로어와 어스닷컴 등 다수 외신이 보도했다. 미국화학회(ACS) 학술지 '지속 가능 화학 및 공학'에 발표된 이 연구에서 연구팀은 이산화탄소 하이드레이트를 초고속으로 형성하는 기술을 개발했다. 이 독특한 얼음 형태의 물질은 이산화탄소를 해저에 저장하여 대기 중 방출을 막는 역할을 한다. 탄소 포집에서 하이드레이트는 이산화탄소를 물 분자와 함께 얼음과 비슷한 고체 상태로 만드는 기술을 의미한다. 하이드레이트는 자체 부피의 최대 180배에 달하는 이산화탄소를 저장할 수 있다. 아울러 일정한 온도와 압력 조건에서 안정적으로 유지되므로 이산화 탄소 누출 위험을 줄일 수 있다. 연구를 이끈 바이바브 바라두르(Vaibhav Bahadur) 교수는 "우리는 대기 중 수십억 톤의 탄소를 안전하게 제거하는 방법을 찾는 엄청난 과제를 안고 있다"며 "하이드레이트는 탄소 저장을 위한 보편적인 해결책을 제공하며, 탄소 저장 분야에서 중요한 역할을 하려면 빠르고 대규모로 성장시키는 기술이 필요하다. 우리는 환경친화적인 방법으로 하이드레이트를 빠르게 성장시킬 수 있음을 입증했다"고 말했다. 이산화탄소는 가장 흔한 온실가스이며, 기후 변화의 주요 원인이다. 탄소 포집 및 저장 기술은 대기 중 탄소를 제거하고 영구적으로 저장하는 기술로, 지구 탄탄소화의 핵심 요소로 간주된다. 현재 가장 일반적인 탄소 저장 방법은 이산화탄소를 지하 저류층이 주입하는 것이다. 이 기술은 탄소를 포집하고 석유 생산을 증가시키는 이중 효과를 갖는다. 그러나 이 기술은 이산화탄소 누출 및 이동, 지하수 오염, 탄소 주입 관련 시 지진 위험 등 심각한 문제를 안고 있다. 또한 지하 저류층 주입에 적절한 지질학적 특징이 부족한 지역도 많다. 바하두르 교수는 하이드레이트가 대규모 탄소 저장을 위한 '차선책'이지만 주요 문제를 극복하면 '최선책'이 될 수 있다고 강조했다. 지금까지 탄소를 포집하는 하이드레이트 형성 과정은 느리고 에너지 집약적이어서 대규모 탄소 저장 수단으로 활용되기 어려웠다.. 이번 연구에서 팀은 기존 방법보다 하이드레이트 형성 기술을 6배 증가시켰다. 이러한 속도와 화학 물질을 사용하지 않는 공정은 대규모 탄소 저장에 하이드레이트를 더 쉽게 활용할 수 있게 한다. 이 연구의 핵심은 마그네슙으로, 화학촉진제 없이도 촉매 역할을 한다. 특정 반응기에서 이산화탄소를 고속 버블링으로 추가하면 빠르고 친환경적인 하이드레이트를 형성할 수 있다. 게다가 해수에서도 잘 작동하기 때문에 복잡한 담수화 공정이 필요하지 않다. 바라두르 교수는 "해저가 안정적인 열역학 조건을 제공하여 하이드레이트 분해를 방지하기 때문에 매력적인 탄소 저장 옵션이다"라며 "우리는 해안선을 가진 모든 국가에 탄소 저장을 가능하게 만들고 있으며, 이는 전세계적으로 탄소 저장 접근성과 실현 가능성을 높여 지속 가능한 미래에 더 가까워지게 한다"고 설명했다. 이번 연구 성과는 탄소 포집뿐만 아니라 해수 담수화, 가스 분리와 저장 등 다양한 산업에도 적용될 수 있다. 연구팀과 텍사스 대학교는 관련 기술에 대한 특허를 출원했으며, 상용화를 위한 스타트업 설립도 고려하고 있다. 하이드레이트 기술은 탄소 포집 및 저장 분야에서 혁신적인 기술로 주목받고 있으며, 지속적인 ㅇ녀구 개발을 통해 미래 탄소 중립 목표 달성에 기여할 것으로 기대된다.
-
- 포커스온
-
[신소재 신기술(74)] 탄소 포집·저장 6배 높인 '하이드레이트'
-
-
[기후의 역습(25)] 약한 해양 순환, 대기 중 이산화탄소 축적 증가
- 기후변화가 진행됨에 따라 해양 역전순환(적도 부근의 따뜻한 바닷물이 북쪽으로 흘러가고, 북쪽의 차가운 물이 하층부로 내려가 남쪽으로 흐르는 해류 순환) 흐름이 크게 약화될 것으로 예상된다. 그런 가운데, 해류가 약화되면 바다가 대기에서 이산화탄소를 흡수하는 양이 줄어들고, 결국 대기에 축적되는 이산화탄소가 증가할 것이라는 연구 결과가 나왔다고 PHYS가 전했다. 네이처 커뮤니케이션에 발표된 MIT의 새로운 연구에 따르면, 해류가 약해짐에 따라 심해에서 대기로 방출되는 탄소가 더 많아질 것이며, 따라서 해양 순환과 바다의 장기적인 탄소 저장 능력 사이의 관계가 재정립되어야 할 것으로 보인다. 그 이유는 바다의 철분, 용승하는 탄소와 영양분, 표면 미생물 등의 작용 때문이다. 해류가 종전보다 느리게 순환하면 이들은 궁극적으로 바다가 대기로 다시 배출하는 이산화탄소의 양을 증가시키는 작용을 하게 된다는 것이다. MIT 연구팀을 이끈 조나단 로더데일 박사는 ”기후에 영향을 미치는 해양 순환과 대기 탄소 수준 사이의 관계를 볼 때 미래의 바다가 심해에 탄소를 충분히 저장할 것이라고 기대할 수 없다. 기후 변화 완화를 위해 자연적인 정화에 의존하기보다 탄소 배출을 줄이는 데 더 공격적으로 나서야 한다"라고 밝혔다. 로더데일 연구팀은 해양 영양분, 해양 유기체, 철분을 분석, 이들의 상호 작용이 전 세계 식물성 플랑크톤의 성장에 어떻게 영향을 미치는지를 분석했다. 바다의 식물성 플랑크톤은 해양 표면에 서식하며, 심해에서 용승하는 탄소와 영양분과 철분을 섭취하는 미세한 유기체다. 식물성 플랑크톤이 많을수록 광합성을 통해 대기에서 더 많은 이산화탄소를 흡수할 수 있다. 특히 이는 바다의 탄소 격리에 큰 역할을 한다. 연구팀은 여러 지역 해양의 조건에 맞춰 이를 상자로 구성한 ‘상자 모델’을 개발했다. 각 상자에는 지역별 해양 상황과 유사한 영양분, 철 및 리간드(식물성 플랑크톤의 부산물로 여겨지는 유기 분자)가 담겼다. 팀은 또한 바다의 더 큰 해류 순환을 나타낼 수 있도록 상자 사이에 해류의 순환을 모델링했다. 해류 역전순환을 상자 모델에서 그대로 재현한 것이다. 모델을 바탕으로 실험한 결과 팀은 바다에 철분이 과도해도 남는 철분이 식물성 플랑크톤 성장에는 큰 영향을 미치지 않는다는 것을 밝혔다. 철분은 바다에 용해되지 않으므로 그 자체로는 식물성 플랑크톤이 사용할 수 없었다. 철분은 플랑크톤이 소비할 수 있는 형태로 리간드와 연결될 때 "유용한" 수준에서만 용해됐다. 리간드의 존재가 해양의 이산화탄소 농도를 좌우하는 가장 큰 변수였다. 팀은 상자 모델을 확장해 태평양, 북대서양 등 보다 다양한 환경으로 넓혔고, 다양한 해양 순환의 효과를 포함해 모델 내의 다른 상호 작용도 실험했다. 팀은 다양한 해류 강도에서 플랑크톤 등의 생물 활동과 함께 탄소, 영양소, 철 및 리간드 농도를 분석하고 다양한 시나리오를 비교 분석했다. 실험 결과는 새로운 결과를 보여주었다. 바다의 순환, 즉 해류가 약해질수록 바다가 깊은 곳에서 끌어오는 탄소와 영양분의 양이 적어졌다. 그러면 표면의 모든 식물성 플랑크톤은 자양분이 부족해지고, 그 결과 플랑크톤이 생성하는 리간드 등 부산물도 감소한다. 사용 가능한 리간드가 줄어들면 식물성 플랑크톤은 해수 표면의 철분을 덜 사용하게 돼 개체수가 더욱 감소한다. 대기에서 이산화탄소를 흡수하고 심해에서 용승된 탄소를 소비하는 식물성 플랑크톤이 크게 줄어들 수밖에 없다. 결국 해양 순환이 약해질수록 대기 중에 더 많은 이산화탄소가 축적된다고 보고서는 밝혔다. 해양의 순환은 기후 변화로 인해 크게 약화될 것이라는 우려다. 일부 기후 모델에 따르면, 특히 남극 주변의 빙상이 급속도로 녹아 내리고 있으며, 이로 인해 해양 순환이 30% 둔화될 것으로 예측한다. 이로 인해 해양이 대기에서 흡수하는 이산화탄소가 크게 줄 뿐만 아니라 심해의 이산화탄소 방출을 일으킬 수 있다는 지적이다. 지구 온난화가 증폭된다는 의미다.
-
- 포커스온
-
[기후의 역습(25)] 약한 해양 순환, 대기 중 이산화탄소 축적 증가
-
-
[신소재 신기술(71)] 음식물 쓰레기 활용해 기존 소재보다 4배 강한 '식용 콘크리트' 개발
- 해초, 양배추와 오렌지 껍질 등 식물성 재료를 활용해 기존 콘크리트보다 3배 이상 강한 '식용 콘크리트' 건축 자재가 개발되어 주목받고 있다. 일본 도쿄대학 연구팀이 배추와 바나나,양파 껍질 등 식물성 유기물로 기존 콘크리트보다 4배 강한 콘크리트를 개발했다고 더쿨다운이 5일(현지시간) 전했다. 프린스턴 대학교에 따르면, 콘크리트는 물 다음으로 지구상에서 가장 많이 소비되는 제품이지만, 매년 44억 톤의 이산화탄소를 배출하며, 전 세계 오염의 8%를 차지한다. 이에 따라 기존 콘크리트 생산 과정의 대안을 모색하고, 건물의 내구성을 높여 콘크리트 사용량을 줄이는 노력이 중요해졌다. 이러한 맥락에서 도쿄 대학 연구팀이 개발한 '식용 콘크리트'는 기존 콘크리트보다 4배 강할 뿐 아니라 음식물 쓰레기 문제 해결에도 기여할 수 있어 더욱 주목받고 있다. 연구팀은 커피 찌꺼기, 바나나 껍질, 양배추, 오렌지 껍질, 양파 껍질, 호박 등 유기물을 건조 및 압축하고 물, 조미료와 혼합하여 고온 틀에서 압축하는 방식으로 친환경 콘크리트를 제작했다. 연구 수석 저자인 유야 사카이는 "저희의 목표는 해초와 일반 음식물 쓰레기를 사용하여 최소한 콘크리트만큼 튼튼한 재료를 만드는 것이었다"면서 "하지만 먹을 수 있는 음식물 쓰레기를 사용했기 때문에 재활용 과정이 원래 재료의 맛에 영향을 미치는지 확인하는 데도 관심이 있었다"라고 설명했다. 실험 결과, 이 식용 콘크리트는 굽힘 강도가 기존 콘크리트보다 훨씬 뛰어났으며, 소금이나 설탕을 첨가하여 맛을 개선해도 강도에는 영향을 미치지 않았다. 선임 연구원인 코다 마치타는 "호박에서 추출한 표본을 제외하고 모든 재료가 굽힘 강도 목표를 초과했다"며 "콘크리트보다 3배 이상 강한 재료를 생산한 배추 잎을 약한 호박 기반 재료와 섞어 효과적인 보강재를 제공할 수 있다는 것을 발견했다"고 말했다. 이 콘크리트는 또 부패, 곰팡이, 곤충에 강하며 4개월 동안 공기 중에 노출되어도 맛이나 강도가 변하지 않는 것으로 확인됐다. 이 연구는 더욱 견고한 건물을 위한 강력한 콘크리트를 개발하는 동시에, 지구 오염의 또 다른 원인인 음식물 쓰레기를 활용할 수 있는 방법을 제시했다. 미국 농무부에 따르면, 식량 손실 및 폐기물은 인간 소비를 위해 생산된 모든 식량의 3분의 1을 차지하며, 2021년 환경보호국 보고서에서는 식량 손실로 인한 1억 8700만 톤 이상의 이산화탄소 배출량이 석탄 화력 발전소 42개의 연간 오염량과 비슷하다고 밝혔다. 이 기술이 미래 건축물에 적용될지는 아직 미지수지만, 과학자들은 다양한 분야에 활용될 수 있다는 점에서 긍정적인 반응을 보이고 있다. 이는 기존의 틀을 벗어난 사고가 이산화탄소 배출과 환경오염 두 가지 문제를 동시에 해결할 수 있는 가능성을 보여주는 좋은 사례라는 평가다.
-
- 포커스온
-
[신소재 신기술(71)] 음식물 쓰레기 활용해 기존 소재보다 4배 강한 '식용 콘크리트' 개발
-
-
[기후의 역습(22)] 기후 변화로 상어 알 부화 둔화, 2100년까지 알 부화율 90% 급락 우려
- 상어 알 부화율이 금세기 말, 즉 2100년까지 최대 90%까지 급락할 수 있으며, 이는 상어 종의 생존이 위험에 처해 있음을 시사한다는 연구 결과가 발표돼 충격이다. 해양 온난화와 산성화가 증가하면서 배아가 상당수 사망함에 따라 전 세계의 알을 낳는 상어는 세기말까지 개체 수에 큰 타격을 입을 수 있으며, 100종 이상의 상어 종이 그 영향을 받는다는 것이다. 이는 프랑스 국립 자연사박물관의 노에미 쿨롱(Noémie Coulon) 박사팀이 발견했다. 지중해와 북동 대서양에서 관찰되는 작은 점박이 고양이상어(Scyliorhinus canicula)에 대한 연구에 기초한 것으로 뉴사이언티스트가 보고서 내용을 요약해 전했다. 작은 점박이 고양이상어는 배아가 들어 있는 튼튼한 가죽 알통을 낳아 번식하는 상어 종의 약 40%를 차지한다. 이 상어 배아는 해수 온도와 산도를 의미하는 pH 수치 등 해양 조건 변화에 매우 민감하다. 기후 변화와 지구 온난화에 따라 바다는 과거에 비해 대기로부터 과도한 이산화탄소를 흡수하고 있으며, 이로 인해 바다는 더욱 더워지고 더 산성화되고 있다. 박물관 연구팀은 바다 환경을 재현한 실험실 수조에서 월별 온도 변화를 포함한 다양한 해양 조건에 작은 점박이 고양이상어 알을 넣었다. 연구팀이 이 종을 선택한 이유는 유럽에서 가장 풍부한 상어 중 하나이기 때문이었다. 첫 번째 테스트에서는 산업화 이전 수준보다 온도가 섭씨 2.7도 상승하고 2100년까지 pH가 0.2로 떨어지는 '중간 수준 기후 시나리오'에서 예상되는 수질 조건을 만들었다. 두 번째 시나리오는 세계가 계속해서 화석연료 연소에 크게 의존하는 '악화 상황'을 가정해 금세기 말까지 기온이 섭씨 4.4도 상승하고 pH가 0.4로 하락할 것으로 예측했다. 세 번째는 1995년부터 2014년까지 상어 서식지의 수온과 pH를 그대로 유지하는 '기본 수준의 시나리오'로 정했다. 연구팀은 배아가 발달하는 4개월 동안 세 가지 시나리오 각각의 조건에서 시뮬레이션을 실행했다. 그 결과 세 가지 실험 조건에 따라 배아 부화 성공에 극적인 차이가 있음을 발견했다. 기본 시나리오와 중간 시나리오에서는 약 82%의 알이 성공적으로 부화했다. 그러나 가장 따뜻한 수온의 시나리오에서는 배아 45개 중 5개만 살아남았다. 이는 거의 90%가 손실된 것이다. 쿨롱 박사는 "좋지 않은 시나리오이기는 하지만 배아의 높은 사망률에 큰 충격을 받았다"며 "기후 변화 대응을 적절하게 하지 못해 이런 조건이 만들어지면 상어 종은 멸종으로까지 이어질 수 있다"고 우려했다. 특히 8월과 같이, 상대적으로 따뜻한 기간이 짧아도 부화 실패를 야기하기에 충분했다고 한다. 이러한 결과를 바탕으로 쿨롱 박사는 돔발상어(너스하운드)와 같이 멸종 위기에 처해 있는 취약한 종을 포함, 다른 산란 상어도 마찬가지로 멸종 위기에 처할 것으로 예상했다. 쿨롱 박사는 다만 "아직 온난화에 대처할 수 있기 때문에 속단할 수는 없다"면서 "금세기 말까지 온도 상승을 섭씨 2도 정도만 유지한다면 상어 종은 살아남을 수 있다"고 지적했다.
-
- 포커스온
-
[기후의 역습(22)] 기후 변화로 상어 알 부화 둔화, 2100년까지 알 부화율 90% 급락 우려
-
-
[신소재 신기술(67)] 100% 생분해되는 보리 플라스틱 개발
- 덴마크 코펜하겐 대학교 연구팀이 100% 생분해되는 플라스틱을 개발하고 있다. 이 플라스틱은 보리 전분으로 만들어지며, 기존 플라스틱에 비해 훨씬 빠른 속도인 약 2개월만에 분해된다고 투머로우 월드투데이가 보도했다. 플라스틱은 가볍고 질기며 저렴한 가격과 다양한 활용성 등 많은 장점을 가지고 있지만 환경 오염 문제를 일으키는 주요 원인 중 하나다. 코펜하겐 대학교에 따르면 플라스틱 생산 과정에서 발생하는 이산화탄소 배출량은 전체 항공 교통량을 합친 것보다 많다. 또한 자연적으로 분해되지 않고 미세 플라스틱 형태로 환경에 잔류해 심각한 문제를 야기한다. 미세 플라스틱은 인체의 뇌와 폐, 태반을 비롯해 고환과 음경 등의 생식기에도 검출됐다는 새로운 연구가 속속 발표되고 있다. 이러한 문제를 해결하기 위해 코펜하겐 대학교 연구팀은 변형된 보리 전분으로 만들어져 2개월 안에 완전히 분해되는 새로운 플라스틱을 개발했다. 이 플라스틱은 작물에서 얻은 천연 식물성 원료를 사용해 식품 포장재 등에 활용될 수 있다. 연구팀의 안드레아스 블레노우 교수는 "플라스틱 폐기물 문제는 재활용만으로는 해결할 수 없다"며 "우리는 기존 바이오 플라스틱보다 강하고 물에 대한 내성이 뛰어난 새로운 종류의 바이오 플라스틱을 개발했다"고 밝혔다. 또한 "이 플라스틱은 100% 생분해 가능하며, 미생물에 의해 퇴비로 전환될 수 있다"고 부연했다. 새로운 바이오 플라스틱은 아밀로스와 셀룰로오스라는 식물성 원료를 주성분으로 하며 쇼핑백, 포장재 등 다양한 용도로 활용될 수 있는 잠재력을 가지고 있다. 연구팀은 아직 실험실 단계의 시제품만 개발했지만 덴마크를 비롯한 여러 지역에서 대량 생산이 가능할 것으로 전망했다. 블레노우 교수는 "바이오 플라스틱은 새로운 개념에 아니지만 오해의 소기자 있는 이름"이라고 지적했다. 현재 제한된 양의 바이오 플라스틱만이 분해 가능하며, 산업용 퇴비화 공장에서 특수한 조건에서만 분해된다는 게 그의 설명이다. 그는 "저는 그 이름이 적절하지 않다고 생각한다. 가장 흔한 유형의 바이오 플라스틱은 자연에 버려지면 쉽게 분해되지 않기 때문이다"라고 말했다. 블레노우 교수는 "플라스틱이 분해되는 과정은 수년이 걸릴 수 있으며, 일부는 미세 플라스틱으로 계속 오염을 일으킨다"며 "바이오 플라스틱을 분해하기 위해서는 특수 시설이 필요하다"고 거듭 강조했다. 소위 바이오 북합체에는 자연적으로 분해되는 여러 가지 성분이 포함되어 있다. 주요 성분은 식물계에서 흔히 볼 수 있는 아밀로스와 셀룰로오스다. 예를 들어 아밀로스는 옥수수, 감자, 보리 등에서 추출된다. 어밀로스와 셀룰로오스는 길고 강한 분자 사슬을 형성한다. 아밀로스가 풍부한 전분의 전체 생산 사슬을 이미 존재한다. 실제로 매년 수백만 톤의 순수 감자 전분과 옥수수 전분이 생산되어 식품 산업과 다른 여러 분야에서 사용된다고 불레노우 교수는 밝혔다. 그러나 플라스틱을 효율적으로 재활용하는 것은 결코 간단하지 않다. 각각의 플라스틱의 주요 차이점으로 인해 플라스틱을 분류하는 방법이 다 다르기 때문이다. 또 플라스틱을 재활용하기 위해서는 오염 물질이 용기 내부에 조금이라도 남아 있으면 안 된다. 블레노우 교수는 "플라스틱 재활용은 복잡하고 어려운 문제이며, 근본적인 해결책이 될 수 없다"며 "플라스틱처럼 작동하면서 환경을 오염시키지 않는 새로운 소재를 개발하는 것이 중요하다"고 강조했다. 현구팀은 현재 특허 출원을 처리 중이다. 승인되면 새로운 바이오 복합소재를 생산할 수 있는 기반이 마련될 수 있다.
-
- 포커스온
-
[신소재 신기술(67)] 100% 생분해되는 보리 플라스틱 개발
-
-
[기후의 역습(18)]이산화탄소 2배 증가하면 지구 온도 최대 14도 높아져
- 대기 중 이산화탄소(CO₂) 양이 두 배 증가하면 지구의 평균 기온이 7도에서 최대 14도까지 높아질 수 있다는 연구 결과가 발표돼 주목된다고 PHYS가 전했다. 네덜란드 왕립해양연구소(NIOZ)와 위트레흐트 대학교 및 브리스톨 대학교의 공동 연구팀은 캘리포니아 인근 태평양에서 드릴로 뚫어 채취한 코어 퇴적물을 분석한 결과 이 같은 사실을 발견했다고 밝혔다. 연구 결과는 '네이처 커뮤니케이션(Nature Communications)'에 게재됐다. 연구팀의 케이틀린 위트코프스키 박사는 "연구 결과 나타난 기온 상승 예상치는 유엔 기후변동에 관한 전부간 패널(IPCC)이 지금까지 추정해 온 2.3~4.5도 상승보다 무려 3배 가까이 높다"고 말했다. 연구팀은 태평양 해저 바닥에서 추출한 45년 된 퇴적물 드릴 코어를 사용해 분석했다. 팀은 "코어를 추출한 지점의 해저에는 수백만 년 동안 무산소 상태였다. 이 때문에 이 코어는 탄소를 측정하는 우리 연구에 매우 적합했다"고 말했다. 산소가 없었기 때문에 결과적으로 유기물은 미생물에 의해 잘 분해되지 않고 더 많은 탄소가 보존됐다는 것이다. 위트코프스키는 "지난 1500만 년 동안의 이산화탄소 상태를 단일 지점에서 조사한 연구는 없었다"며 "채취된 드릴 코어의 상부 1000m는 지난 1800만 년의 역사를 담고 있다"고 설명했다. 연구진은 새로운 접근 방식을 적용, 이 코어 기록에서 과거 해수 온도와 고대 대기의 이산화탄소 수준을 추출할 수 있었다. 연구진은 20년 전 NIOZ에서 개발된 'TEX86'이라는 방법을 사용하여 온도를 도출했다. TEX86은 특수한 종류의 미생물인 고세균 막에 존재하는 특정 물질을 사용하는 분석 방법이다. 고세균은 해양 상부 200m 수온에 따라 막의 구성을 화학적으로 최적화한다. 그 막의 화학 물질은 해양 퇴적물에서 분자화석으로 발견된다. 연구팀은 이를 채취해 분석했다. 연구진은 조류에서 흔히 발견되는 두 가지 물질인 엽록소와 콜레스테롤의 화학적 성분을 사용해 과거 대기의 이산화탄소 함량을 도출하는 새로운 접근 방식을 적용했다. 이는 정량적 이산화탄소 측정을 위해 콜레스테롤과 엽록소를 사용한 최초의 연구다. 이들 콜레스테롤과 엽록소를 생성하려면 조류는 물에서 이산화탄소를 흡수하고 광합성을 통해 고정(탄소 고정)해야 한다. 한편, 지구상의 탄소 중 아주 작게는 일반적인 12C가 아니라 다소 '무거운 형태'인 13C로도 발생한다. 이산화탄소 소비에 관한 한 조류는 분명히 12C를 선호한다. 그러나 물속의 이산화탄소 농도가 낮을수록, 많은 조류들이 드물게 발생하는 13C도 이용한다. 따라서 엽록소와 콜레스테롤 두 물질의 13C 함량은 바닷물의 이산화탄소 함량을 측정하는 척도가 되며, 이는 용해도 법칙에 따라 대기의 이산화탄소 함량도 연이어 측정할 수 있다. 연구진은 이 같은 새로운 방법을 사용해 이산화탄소 농도가 1500만 년 전 약 650ppm에서 산업 혁명 직전 280ppm으로 떨어진 것으로 추정된다고 밝혔다. 연구팀은 나아가 지난 1500만 년 동안 도출된 온도와 대기 이산화탄소 수준을 각각 그래프로 표시하고 비교했다. 그 결과 둘 관계가 밀접하게 관계됐다는 사실도 발견했다. 1500만 년 전의 지구 평균 기온은 18도가 넘었다. 이는 오늘날보다 4도 더 높은 것으로, IPCC가 가장 극단적인 시나리오에서 2100년을 예측하는 수준과 비슷하다. 연구팀은 "우리의 연구는 인류가 이산화탄소 배출을 줄이기 위한 조치를 등한시하고 탄소 배출을 상쇄하기 위한 혁신을 이룩하지 않으면 미래가 어떻게 나빠질 수 있는지를 엿볼 수 있게 해 준다"라고 강조했다. 이산화탄소의 농도가 생각보다 더 온도에 더 큰 영향을 미칠 것이라는 경고다.
-
- 포커스온
-
[기후의 역습(18)]이산화탄소 2배 증가하면 지구 온도 최대 14도 높아져
-
-
[기후의 역습(15)] 과학자들, 해수면 60cm 이상 상승 경고
- 해수면 상승은 남서 태평양의 여러 섬에서부터 이탈리아의 베니스와 같은 운하 기반 도시에 이르기까지 전 세계 해안을 위협하고 있다고 지구 온난화를 막기 위한 비영리기관 TCD(쿨다운)이 전했다. 미국에서는 보스턴을 비롯한 많은 해안 도시들이 해수면 상승에 대비하고 있으며, 미국 국립해양대기청(NOAA)은 30cm의 해수면 상승을 어떻게 관리할 것인지에 대한 대화형 지도를 공유하기에 이르렀다. NOAA의 2022년 해수면 상승 기술 보고서는 2022년의 오염 수준이 유지된다고 가정할 경우, 2020~2100년 사이에 해수면이 60cm 이상 상승할 가능성이 더 높아질 것이라고 설명하고 있다. NOAA는 또 운송, 농업, 산업, 기타 원인으로 인한 오염과 지구 온난화를 줄이지 못하면, 같은 기간 동안 해수면의 높이가 2m10cm까지 올라갈 수 있다고 경고했다. 해수면이 60cm 상승하면 미국에서는 동부와 서부 해안에 접한 모든 주들과 루이지애나, 텍사스, 미시시피, 앨라배마까지 위험에 처하게 된다. 오리건은 가장 큰 영향을 받을 수 있는 주 중의 하나다. '오리건 라이브'에 따르면 해수면이 1m80cm 상승하면 주 경계를 따라 흐르는 컬럼비아 강에 있는 섬들이 물에 잠기게 될 것이며, 강 인근에서 가장 큰 섬인 소비아일랜드를 완전히 수장할 가능성도 높다. 이 정도 상승이면 해안을 따라 광범위한 피해가 발생할 것이며, 워렌턴, 씨사이드, 톨레도와 같은 곳도 대부분 물에 잠기게 된다. 높아지는 수위는 무엇보다도 해안 지역 사회를 심각한 홍수의 위험에 빠뜨린다. 가정과 일터를 파괴하고, 일부 지역에서는 사람이 거주할 수 없게 되며, 시민들은 생존의 위험에 노출된다. 미국 국립자원보호협의회(NRDC)에 따르면 해수면 상승의 다른 주요 영향 중에는 기상 이변, 토지 상실 및 해안 침식, 염수 침입 및 담수 오염, 기후 이주 가능성 증가 등이 있다. 여기서 기후 이주는 혹독한 기후로 바뀜에 따라 인간이 거주할 수 없게 돼 강제로 이주할 수밖에 없는 경우를 말한다. 해수면이 60cm 상승한다면 한국 영토의 약 10.8%가 침수될 것으로 예상된다. 이는 약 2600㎢에 해당하는 넓이다. 침수 예상 범위는 해안 지형, 지표고, 조류, 방파제 등 다양한 요인에 따라 달라질 수 있다. 인천광역시, 경기도, 충청남도, 전라남도, 경상남도 등 해안 저지대에 위치한 지역들이 주로 영향을 받게 될 것이다. 해수면 상승의 가장 큰 원인은 지구 온난화다. NRDC가 지적했듯이, 더 따뜻한 날씨는 매년 2700억 톤의 그린란드 빙하를 녹인다. 그린란드 얼음 덩어리가 사라지고 있는 것이다. 이는 그대로 바다로 흘러들어 해수면을 높인다. 바다는 또 이산화탄소와 메탄과 같은 가스의 차단(커튼 효과)에 의해 대기에 갇힌 과잉 열의 약 90%를 흡수한다. 이것은 물의 팽창으로 이어진다. NOAA 과학자들은 2004년 이후 세계 해수면 상승의 3분의 1이 해수 온난화로 인해 발생하는 것으로 추정한다. 따라서 지구 온난화를 유발하는 오염을 줄이는 것이 지구의 건강과 인간의 안전을 위해 필수적이라는 지적이다. 국가와 기관, 기업의 대책도 중요하지만 주민들의 생활 방식 변화도 이에 기여할 수 있다. 자동차를 버리고 걷거나 자전거와 같은 마이크로모빌리티를 타는 것이 권장되며, 식물성 식단으로 전환하는 것도 세계 최대 오염원 중 하나인 육류 산업의 수요를 줄인다. 습지는 자연적인 방수 기능을 제공하며, 해수면 상승에 대한 완충 역할을 한다. 습지 보호 및 복원을 통해 해안선의 자연적 방어력을 강화해야 한다. 또한 염수에 강한 작물과 나무를 개발하여 해수면 상승으로 인한 농업 및 임업 피해를 최소화해야 한다.
-
- 포커스온
-
[기후의 역습(15)] 과학자들, 해수면 60cm 이상 상승 경고
-
-
[신소재 신기술(56)] 탄소 포집 혁신, 전기 스펀지로 CO₂ 직접 흡수
- 이산화탄소(CO²)가 그 어느 때보다 빠르게 대기 중에 축적되고 있는 가운데 영국 과학자들이 전기 스펀지로 공기 중에서 직접 탄소를 포집하는 기술을 개발했다. 미국 국립해양대기청(NOAA)에 따르면 NOAA의 글로벌모니터링연구소가 마우나 로아 대기 관측소에서 측정한 이산화탄소 수준은 지난 5월 427ppm으로 급상승하며 동월 기준 최고치를 기록했다. 매년 5월은 이산화탄소가 북반구에서 가장 높은 수준에 도달하는 달이다. 이번 측정 수치는 2023년 5월에 비해 2.9ppm 증가한 것이며 NOAA의 50년 기록 중 5번째로 큰 폭의 증가이기도 하다. 2023년의 3.0ppm 증가를 고려하면, NOAA가 측정을 시작한 이래 2022~2024년까지 2년 동안의 상승폭으로도 최고 기록이다. 이처럼 이산화탄소의 축적이 역대급인 가운데 에너지가 적게 느는 혁신적인 공기중 직접 탄소 포집 기술이 개발돼 주목을 끌고 있다. 케임브리지 대학 연구원들은 충전된 활성탄을 사용해 기존 방법보다 더 효과적으로 공기 중 이산화탄소를 직접 흡수할 수 있는 저에너지 탄소 포집 기술을 개발했다고 사이테크데일리가 9일(현지시간) 보도했다. 연구팀은 가정용 정수 필터에 일반적으로 사용되는 활성탄에 에너지를 공급하기 위해 배터리 충전 기술을 적용했다. 연구팀은 활성탄 '스폰지'를 CO₂와 가역적인 결합을 형성하는 이온을 충전함으로써, 이 충전된 물질이 공기에서 직접 CO₂를 성공적으로 포집할 수 있다는 사실을 발견했다. 연구를 주도한 유수프 하미드 화학과(Yusuf Hamied Department of Chemistry)의 알렉산더 포스 박사는 “대기 중 탄소 배출을 포집하는 것은 최후의 수단이지만 기후 위기의 심각성을 고려할 때 반드시 탐구해야 할 사항”이라고 말했다. 공기 직접 탄소 포집(DAC) 기술 스폰지와 같은 재료를 사용해 이산화탄소를 제거하는 공기 직접 탄소 포집(DAC) 기술은 탄소 포집을 위한 잠재적인 접근 방법 중 하나다. 그러나 현재의 접근 방식은 비용이 많이 들고 고온과 천연 가스 사용이 필요하며 안정성 부족 등의 단점이 잇다. 포스 박사는 "대기로부터 탄소 포집을 위해 다공성 물질을 사용하는 몇가지 유망한 연구가 진행됐다"며 "활성탄은 저렴하고 안정적이며 대량으로 생산되기 때문에 우리는 활성탄이 옵션이 될 수 있는 지 확인하고 싶었다"고 설명했다. 또한 충전된 활성탄 스폰지는 포집된 CO₂를 제거해 저장할 때 기존 방법보다 훨씬 낮은 온도를 필요로 하기 때문에 현재의 탄소 포집 방법보다 더 에너지 효율적일 수 있다. 연구 결과는 '네이처(Nature)' 저널에 게재됐다. 포스 박사는 "우리가 가장 시급하게 해야 할 일은 전 세계적으로 탄소 배출량을 줄이는 것이지만, 온실가스 순배출 제로를 달성하고 기후 변화의 최악의 영향을 제한하기 위해서는 온실가스 제거도 필요하다. 현실적으로 우리는 할 수 있는 모든 일을 해야 한다"고 말했다. 탄소 포집에서 활성탄의 역할 활성탄은 정수기 필터와 같은 많은 정제 응용 분야에서 사용되지만 일반적으로 공기 중에서 탄소를 흡수하고 보관하지는 못한다. 포스 박사 팀은 활성탄을 배터리처럼 충전할 수 있다면 탄소 포집의 적절한 재료가 될 수 있다고 제안했다. 연구팀은 활성탄을 수산화물이라는 화합물로 충전하면 이산화탄소와 가역 결합을 형성하기 때문에 탄소 포집에 적합할 것이라는 가설을 세웠다. 배터리를 충전할 때는 충전된 이온이 배터리 전극 중 하나에 삽입된다. 이후 연구팀은 배터리와 유사한 충전 프로세스를 사용해 저렴한 활성탄 천을 수산화물 이온으로 충전했다. 이 과정에서 천은 본질적으로 배터리의 전극과 같은 역할을 하며 수산화물 이온이 활성탄의 작은 기공에 축적된다. 충전 과정이 끝나면 활성탄을 배터리에서 제거해 세척해서 말린다. 연구팀은 충전된 활성탄 스폰지 테스트 결과 수산화물의 결합 메커니즘 덕분에 공기 중에서 직접 이산화탄소를 성공적으로 포집할 수 있는 것을 확인했다. 포스 박사는 "이것은 배터리와 같은 프로세스를 사용해 새로운 재료를 만드는 방법"이라면서 "CO₂ 포집 속도는 기존 방법과 비슷하다. 이 방법이 유망하다고 보는 것은 에너지를 훨씬 더 적게 사용한다는 점이다"라고 설명했다. 저온에서 수산화물-CO₂ 역전 포집된 CO₂를 정제하고 저장할 수 있도록 활성탄에서 탄소를 회수하기 위해서는 활성탄을 가열해 수산화물-CO₂를 역전시켜야 한다. 대기로부터 CO₂를 포집하는 데 현재 사용되는 대부분의 재료에서는 900°C와 같은 높은 온도까지 가열해야 하며 종종 천연 가스를 사용해야 한다. 그러나 케임브리지 팀이 개발한 충전된 활성탄 스폰지는 90~100°C만 가열하면 되며 이는 재생 에너지로 달성할 수 있는 온도다. 재료는 저항 가열을 통해 가열되며, 이는 본질적으로 재료를 안팎으로 가열해 프로세스를 더 빠르고 에너지 효율적으로 만든다. 하지만 아직 재료의 한계도 있다. 포스 박사는 "우리는 현재 포집할 수 있는 이산화탄소의 양을 늘리는 데 노력하고 있으며, 특히 성능이 저하되는 습한 조건에서 이산화탄소의 포집 양을 늘이기 위해 더욱 애쓰고 있다"고 말했다. 연구원들은 이 접근 방식이 탄소 포집 분야를 넘어 활용될 수 있다고 말했다. 기공과 활성탄에 삽입된 이온을 미세 조정해서 다양한 분자를 포집할 수 있기 때문이다.
-
- 포커스온
-
[신소재 신기술(56)] 탄소 포집 혁신, 전기 스펀지로 CO₂ 직접 흡수
-
-
[기후의 역습(12)] 이산화탄소 수치, 역대 최고치 기록…극한 기후 지속돼 가파르게 상승
- 이산화탄소가 그 어느 때보다 빠르게 대기에 축적되고 있다. 역대 최고 수준으로 가파른 상승세를 보이고 있다고 NOAA(미 국립해양대기청)와 캘리포니아 주립대 샌디에이고 캠퍼스 스크립스해양학연구소(Scripps Institution of Oceanography offsite link)의 연구진이 발표했다. NOAA에 따르면 NOAA의 글로벌모니터링연구소(Global Monitoring Laboratory)가 마우나 로아 대기 관측소(Mauna Loa Atmospheric Baseline Observatory)에서 측정한 이산화탄소 수준은 지난 5월 427ppm으로 급상승하며 동월 기준 최고치를 기록했다. 매년 5월은 이산화탄소가 북반구에서 가장 높은 수준에 도달하는 달이다. 이번 측정 수치는 2023년 5월에 비해 2.9ppm 증가한 것이며 NOAA의 50년 기록 중 5번째로 큰 폭의 증가이기도 하다. 2023년의 3.0ppm 증가와 맞물리면, NOAA가 측정을 시작한 이래 2022~2024년까지 2년 동안의 상승폭으로도 최고 기록이다. 불길한 신호를 보내는 이산화탄소 측정 마우나 로아에서 1958년부터 이산화탄소 관측을 시작해 독립적으로 데이터를 축적해 분석해 온 스크립스연구소는 지난 5월 월 평균 이산화탄소 농도를 426.7ppm으로 측정했다. 이는 1년 전인 2023년 5월 측정치 423.78ppm보다 2.92ppm 증가한 수치다. 스크립스연구소에서 이산화탄소 수준이 2년 연속 가파르게 뛰어오른 것은 2020년에 세운 종전 기록에 이은 두 번째다. NOAA와 스크립스 연구진은 1~4월까지 이산화탄소 농도가 다른 해의 동기간 보다 더 빠르게 증가했다고 밝혔다. 최근 몇 년간 기후 변화에 대응하기 위해 화석연료 사용을 억제했고 이에 따른 탄소 배출이 정체 상태에 있다는 보고가 있었지만 실제 대기에서 이산화탄소 농도는 더 짙어진 것이다. NOAA의 릭 스핀래드 박사는 "지난 1년 동안 우리는 기록상 가장 더운 한 해, 기록상 가장 뜨거운 해수 온도, 끝없는 폭염, 가뭄, 홍수, 산불 및 폭풍을 경험했다"라며 "이번에 대기 중 이산화탄소 수준이 그 어느 때보다 빠르게 증가하고 있음이 드러났다. 우리는 이것이 이산화탄소 오염이 기후 시스템에 끼치는 피해를 보여주는 분명한 신호임을 인식하고 가능한 한 신속히 화석연료 사용을 줄이기 위한 조치를 취해야 한다”고 강조했다. 스크립스연구소의 탄소 프로그램 책임자 랄프 킬링 박사는 “이산화탄소의 현재 농도는 수백만 년 만에 최고 수준일 뿐만 아니라 어느 때보다 빨리 증가하고 있다. 화석연료 연소로 인해 매년 최고치를 달성하고 있는 것이다. 화석연료 오염은 마치 매립지의 쓰레기처럼 계속 쌓이고 있다"고 경고했다. 거대한 열을 가두는 담요 다른 온실 가스와 마찬가지로 이산화탄소는 대기에서 담요와 같은 작용을 한다. 지구 표면에서 방출되는 열이 우주로 빠져나가는 것을 막는 것이다. 온난화된 대기는 폭염, 가뭄, 산불은 물론 폭우와 홍수 등 극심한 기상 현상을 촉발한다. 인간이 공기 중으로 방출하는 이산화탄소의 약 절반이 대기 중에 남아 있다. 나머지 절반은 지구 표면에 흡수되어 육지와 바다에 나뉘어 축적된다. 2022~2024년까지 관찰된 2년간의 기록적인 이산화탄소 수준 급증은 2년 째 이어지는 화석연료 연소에 따른 대량의 방출과 엘니뇨 현상의 결합에 따른 것이라는 해석이 많다. NOAA의 글로벌 탄소순환 연구원인 존 밀러 박사는 이를 두고 지구의 자정 능력과 한계를 벗어났다고 진단했다. 이산화탄소의 과다 노출로 인해 해양의 화학적 성질이 변하고 있으며, 이는 해양 산성화와 함께 용존 산소량 감소로 이어져 일부 해양 생물의 생존까지 위협하고 있다. 해양 생태계 전반이 위기에 처하고 있는 것이다.
-
- 포커스온
-
[기후의 역습(12)] 이산화탄소 수치, 역대 최고치 기록…극한 기후 지속돼 가파르게 상승