최신뉴스
-
[증시 레이더] 코스피, 3,090선 눈앞 마감⋯장중 3,130 돌파
1일 코스피가 상승 마감하며 3,090선에 바짝 다가섰다. 한국거래소에 따르면 코스피 지수는 전 거래일보다 17.95포인트(0.58%) 오른 3,089.65로 거래를 마쳤다. 장중에는 3,133.52까지 상승해 연고점을 경신했으나, 오후 들어 상승폭을 반납하며 시가 수준으로 내려왔다. 코스닥 지수는 2.17포인트(0.28%) 오른 783.67로 마감했다. 원/달러 환율은 5.9원 오른 1,355.9원을 기록했다. 삼성전자(0.67%) 등 일부 대형주가 상승한 반면, SK하이닉스(-2.23%), 두산에너빌리티(-8.63%) 등은 약세를 보였다. [미니해설] 코스피, 3,130 돌파 후 숨 고르기…상법개정 기대에 지주사 강세, 자동차·바이오도 견조 1일 코스피가 장중 3,130선을 돌파하며 연고점을 경신했으나, 장 막판 차익실현 매물 출회로 상승폭을 일부 반납하고 3,089.65에서 거래를 마쳤다. 종가는 전일보다 17.95포인트(0.58%) 오른 수준이다. 이날 장중 최고치는 3,133.52로, 이는 2021년 9월 28일(3,134.46) 이후 약 3년 9개월 만에 가장 높은 수치다. 코스닥 지수는 783.67로 전일 대비 2.17포인트(0.28%) 상승 마감했다. 원/달러 환율은 5.9원 상승한 1,355.9원에 마감했다. 원화 약세에도 불구하고 외국인의 순매수와 국내 기업 실적 기대감이 증시에 긍정적으로 작용했다. 지수 상승의 배경으로는 전일 미국 증시의 강세와 상법개정안 관련 기대 심리가 크게 작용했다. 미국에서는 상호관세 협상에 대한 낙관론이 커지면서 주요 지수가 사상 최고치를 경신했고, 국내에서는 국민의힘의 태도 변화로 상법개정안 통과 가능성이 부각되며 관련 종목이 급등세를 보였다. 대표적으로 HS효성이 상한가(29.93%)를 기록했고, SK(9.54%), 한화(15.38%), DL(6.55%), LS(7.11%) 등 지주사 주가가 일제히 급등했다. 전문가들은 상법개정이 현실화될 경우 지배구조 개편 기대감이 본격화되며 지주사 전반에 긍정적 영향을 미칠 것으로 보고 있다. 업종별로는 자동차, 바이오, 건설업종이 강세를 나타냈다. 현대차(3.19%), 기아(1.89%) 등 완성차 업체 주가는 견조했고, 삼성바이오로직스(1.11%), 삼성물산(2.48%), 삼성생명(2.04%) 등 주요 바이오·복합기업들도 상승세를 이어갔다. 반면 SK하이닉스(-2.23%)와 한미반도체(-5.20%)는 하락했으며, 최근 상승세가 컸던 한국전력(-3.44%)과 두산에너빌리티(-8.63%) 등은 차익실현 매물의 영향을 받았다. 이날 개별 종목 중에서는 DL이앤씨가 증권가의 실적 전망 상향과 미국 소형모듈원자로(SMR) 시장 확대 수혜 기대감에 장중 13% 넘게 오르며 강세를 보였다. KB증권은 DL이앤씨의 2분기 영업이익이 1,093억 원으로 시장 기대치를 충족할 것으로 전망하고, SMR 시장에서 엑스에너지(X-energy)와의 협업이 본격화될 것이라며 목표주가를 6만2천 원에서 7만4천 원으로 상향했다. 한편, 코스피가 장중 급등 이후 일부 상승폭을 반납한 점은 단기 과열에 대한 경계감이 여전하다는 점을 시사한다. 특히 연고점 돌파 이후 차익실현 심리가 작용하면서 고점 부근에서의 부담이 확인됐다는 분석이다. 오는 2일 발표될 미국 고용지표, ISM 제조업 지수 등도 투자 심리를 좌우할 주요 이벤트로 꼽히며, 상법개정안 논의의 향방 역시 국내 증시에 영향을 미칠 전망이다. 시장은 단기 이슈에 민감하게 반응하는 구간인 만큼, 개별 종목보다는 업종 간 수급 이동과 테마의 지속성을 주목해야 한다는 조언이 업계에서 나오고 있다.
-
한화오션, 차세대 쇄빙연구선 건조 사업 우선협상자 선정
한화오션이 정부의 차세대 쇄빙연구선 건조 사업의 우선협상대상자로 선정됐다. 한화오션은 1일 해양수산부가 추진하는 해당 사업에서 본계약 체결 후 설계에 착수해 오는 2029년 12월까지 건조를 완료하고 극지연구소에 인도할 예정이다. 새 쇄빙연구선은 총 1만6560t 규모로, LNG 이중연료 전기추진체계를 탑재해 1.5m 두께의 얼음을 양방향으로 쇄빙 가능한 PC3급 성능을 갖춘다. 한화오션은 이번 프로젝트를 통해 글로벌 쇄빙선 시장 공략을 본격화할 방침이다. [미니해설] 한화오션, 차세대 쇄빙연구선 우선협상자 선정…북극 조선 경쟁 '선제 대응' 한화오션이 해양수산부가 주관하는 차세대 쇄빙연구선 건조 사업의 우선협상대상자로 선정되며, 한국 극지 연구의 새 장을 여는 핵심 주체로 떠올랐다. 한화오션은 이달 중 정부와 본계약을 체결한 뒤 선박 설계에 착수하고, 2029년 12월까지 선박을 완공해 한국해양과학기술원 부설 극지연구소에 인도할 예정이다. 이번에 건조될 차세대 쇄빙연구선은 총 1만6560t 규모로, 2009년부터 운항 중인 아라온호(7507t)의 두 배를 넘는 크기다. LNG 이중연료 전기추진체계를 갖춘 이 선박은 극지 환경에서 1.5m 두께의 해빙을 양방향으로 돌파할 수 있는 PC 3급 쇄빙 성능과 영하 45도의 내한 성능을 동시에 구현한다. 선내 설계도 달라졌다. 선실과 식당, 응접실 등은 고급 여객선 수준으로 꾸며져 극한 환경에서도 연구진이 안정적으로 연구를 수행할 수 있도록 배려했다. 이는 단순한 선박을 넘어 고성능 연구 플랫폼으로서의 위상을 염두에 둔 구성이다. 극지연구의 중요성이 높아지는 가운데, 한국은 아라온호 건조 이후 약 15년 만에 새로운 쇄빙연구선 확보에 나서게 됐다. 기후 변화로 인한 극지 환경 변화와 함께 연구 범위가 넓어지고, 선박에 대한 친환경 규제 역시 강화되면서, 고성능·저탄소 선박의 필요성이 커졌기 때문이다. 한화오션은 이번 수주를 통해 쇄빙선 건조 기술력을 다시 한 번 입증했다. 2008년부터 극지 선박 개발에 나선 한화오션은 2014년과 2020년에 걸쳐 총 21척의 쇄빙 LNG운반선을 성공적으로 건조한 바 있다. 이는 전 세계에서 가장 많은 쇄빙 LNG선 건조 실적이다. 회사 측은 차세대 쇄빙연구선을 통해 아라온호와는 완전히 차별화된 '신개념 쇄빙 연구 플랫폼'을 선보일 계획이다. 한화오션 관계자는 "글로벌 톱티어 조선소로서의 기술 역량을 집중해 최고의 성과를 낼 것"이라고 밝혔다. 한화오션의 이 같은 행보는 단순한 국내 연구선 수주를 넘어선다. 북극 해빙이 예상보다 빠르게 진행되면서 북극은 자원, 물류, 기술 경쟁의 최전선으로 부상하고 있다. 미국의 경우, 도널드 트럼프 대통령이 올해 초 해안경비대용 쇄빙선 40척을 발주하겠다고 밝히며 쇄빙선이 조선 산업 재건의 핵심 자산으로 주목받고 있다. 특히 한화오션이 지난해 인수한 미국 필리조선소와의 시너지를 통해, 향후 한미 간 쇄빙선 건조 협력 가능성도 제기되고 있다. 한화오션은 이를 계기로 미국 시장 공략에도 적극 나설 계획이다. 한편, 한화오션은 최근 산업통상자원부 국책 과제인 'PC 2급 쇄빙선 개발' 사업도 수주했다. 이는 북극 고위도에서 연중 운항이 가능한 세계 최고 수준의 쇄빙선을 개발하는 과제로, 한화오션은 이를 통해 남·북극 탐사의 기술적 기반을 한층 강화할 전망이다. 김호중 한화오션 특수선사업부 상무는 "한화오션은 실적과 기술로 검증된 세계 최고의 쇄빙선 건조 역량을 갖춘 기업"이라며 "이번 사업을 통해 글로벌 오션 솔루션 기업으로서의 위상을 강화하고, 미국 등 세계 시장에서 쇄빙선 분야의 새로운 기회를 창출할 것"이라고 강조했다. 한화오션은 차세대 쇄빙연구선 사업을 기점으로 극지 조선 기술의 선두 주자로 입지를 굳히고, 이를 통해 미래 조선 산업의 전략적 성장 동력을 확보해나갈 방침이다.
-
GM-LG엔솔 LMR 배터리, LFP보다 주행거리 81㎞ 길어
제너럴모터스(GM)가 LG에너지솔루션과 공동 개발 중인 '리튬망간리치(LMR, Lithium Manganese Rich)' 배터리가 기존 저가 리튬인산철(LFP) 배터리보다 주행거리를 약 100㎞ 가까이 늘릴 수 있다는 분석이 나왔다. 1일 서울에서 열린 'GM 배터리 테크놀로지 러닝 세션'에서 유창근 GM 기술개발부문 차장은 "북미 전기차(EV) 트럭 기준, LFP는 최대 563㎞ 주행 가능한 반면, LMR은 644㎞까지 달릴 수 있다"고 밝혔다. LMR은 고가 광물인 니켈·코발트를 망간으로 대체해 원가를 낮추면서 에너지 밀도는 33% 높였다. 'LMR 셀'은 리튬 이온 배터리의 한 종류로, 양극재에 망간의 비중을 높여 기존의 니켈, 코발트 기반 배터리 대비 비용 절감과 높은 에너지 밀도로 주행 거리를 늘리고 화재 위험은 낮추는 안정성을 높인 배터리 기술이다. 이 셀은 기존 파우치 구조 대신 각형 구조로 제작돼 배터리 팩의 부품수를 50%까지 줄일 수 있다. GM과 LG엔솔은 2027년 말 시범 생산 후, 2028년부터 본격 양산에 돌입할 예정이다. [미니해설] GM-LG엔솔 차세대 배터리 'LMR', LFP보다 추행거리 81km늘려⋯가격·성능 다 잡는다 GM과 LG에너지솔루션이 손잡고 개발 중인 차세대 배터리 리튬망간리치(LMR)가 기존 중국산 리튬인산철(LFP) 배터리 대비 주행거리가 최대 81km 가량 길어질 수 있다는 평가가 나왔다. 낮은 가격과 높은 에너지 밀도를 동시에 추구한 LMR 배터리가 전기차 시장에서 새로운 기준으로 떠오르고 있다. 1일 서울 종로구 HJ비즈니스센터에서 열린 'GM 배터리 테크놀로지 러닝 세션'에서 GM 한국연구개발법인 유창근 기술개발부문 차장은 "GM이 진행한 실험 결과, 북미 기준 전기트럭에 적용 시 LFP 배터리는 최대 563㎞를 주행할 수 있는 반면, LMR은 644㎞까지 가능하다는 결과가 나왔다"고 밝혔다. 같은 조건에서 주행거리 81㎞의 차이가 발생한 셈이다. 유 차장은 "고성능 하이니켈 NCM(리튬, 니켈, 코발트, 망간) 배터리가 789㎞까지 가능하긴 하지만, LMR은 LFP 수준의 생산비를 유지하면서 에너지 밀도는 33%가량 높아 가격 대비 성능이 우수하다"고 강조했다. LMR, 고가 광물 코발트·니켈 대체 배터리 LMR은 배터리 양극재 내 고가 광물인 코발트와 니켈을 대체하기 위해 개발된 구조다. 기존 NCM 배터리의 경우 코발트·니켈·망간 비율이 각각 33%에 달하지만, LMR은 코발트 02%, 니켈 30~40%, 망간은 60~70%까지 높여 비용 절감을 실현했다. 망간은 니켈이나 코발트에 비해 가격이 현저히 낮고 공급도 안정적이어서 원가 경쟁력 확보에 유리하다. 유차장은 "LFP 배터리는 검증된 안정성과 저렴한 가격으로 중국 업체들이 주도하고 있지만,LMR은 그보다 긴 주행거리와 고밀도 특성을 갖춰 가격과 성능 사이 균형점을 찾은 기술"이라고 소개했다. 특히 LMR 배터리는 구조적으로 에너지 효율을 높이면서도 제조 원가는 크게 늘지 않아 양산 시 가격 경쟁력 확보가 가능하다. 순환경제와 자원 재활용 측면에서도 유리 재활용 측면에서도 LMR은 주목받고 있다. GM에 따르면 폐배터리에서 회수 가능한 리튬 함량이 LMR은 약 8% 수준으로, LFP의 2%보다 훨씬 높다. 이에 따라 LMR은 향후 순환경제와 자원 재활용 측면에서도 유리한 구조를 갖는다. GM과 LG에너지솔루션은 공동 투자한 합작 법인 '얼티엄셀즈'를 통해 2027년 말까지 LMR 각형 배터리셀을 시범 생산하고, 2028년 상반기부터 양산에 돌입한다는 계획이다. 해당 배터리셀은 무선 쉐보레의 전지 픽업트럭 '실버라도 EV'와 캐딜락의 대형 SUV '에스컬레이드 IQ'에 탑재될 예정이다. LG에너지솔루션 자동차 전지 상품기획을 맡고 있는 양영제 팀장은 "현재 목표는 600㎞ 이상 주행 가능하며, 배터리 잔량 20%에서 80%까지 8분 이내에 고속 충전할 수 있는 구조"라며 "충전 수명도 3000회 이상 유지되도록 개발하고 있다"고 말했다. 기존 전기차 배터리의 약점으로 지적됐던 충전 속도와 수명을 개선해 시장 수요를 선도하겠다는 계획이다. GM은 이 LMR 배터리를 중심으로 전기차 생산 원가를 기존 내연기관차 수준까지 낮추는 것을 최종 목표로 삼고 있다. 유 차장은 "배터리 기술 고도화와 함께 생산단가를 낮추고, 규모의 경제를 확보해 전기차를 내연기관차와 비슷한 가격으로 제공할 수 있도록 지속적으로 노력할 것"이라고 밝혔다. 중국 주도의 LFP 중심 시장에서 '성능과 가격의 균형'을 갖춘 LMR이 새로운 선택지로 부상하고 있다. GM과 LG엔솔의 LMR 배터리 전략은 저가 LFP 배터리를 중심으로 확대되고 있는 전기차 시장의 패러다임을 바꾸는 계기가 될 수 있을지 주목된다.
-
[글로벌 핫이슈] TSMC, 애리조나 2팹 3나노 양산 속도⋯미국 생산 칩 가격 최대 30% 올린다
세계 최대 파운드리(반도체 위탁생산) 기업 TSMC가 미국 애리조나 2팹의 가동 일정을 서두르고 있다. 이르면 2026년 3분기 3나노(nm) 공정 장비 반입을 시작으로 2027년 양산에 돌입할 계획이다. 하지만 공사 기간 단축과 비용 상승으로, 미국에서 생산하는 웨이퍼 가격은 최대 30%까지 대폭 오를 전망이다. '탈대만' 비용 청구서…미국산 웨이퍼 몸값 급등 지난달 30일(현지시각) 공상시보(工商時報), 로이터통신 등 외신에 따르면, TSMC는 고객 수요를 맞추고 미국 관세 정책에 대응하기 위해 당초 계획보다 공사 일정을 앞당기고 있다. 그러나 여러 업계 소식통은 TSMC가 2025년에서 2026년 사이 애리조나 공장 생산분에 대해 최소 10%에서 최대 30%의 가격 인상을 검토한다고 전했다. 이 같은 인상률은 세계 4나노 칩 가격 인상률(약 10%)을 크게 웃도는 수준이다. 이 밖에도 3나노와 5나노 웨이퍼 가격은 3~5%, CoWoS 등 첨단 패키징 비용은 5~10% 추가로 오를 전망이다. 미국 내 높은 생산비 부담과 공급망 재편, 인공지능(AI)과 고성능 컴퓨팅(HPC) 수요 급증이 주된 원인으로 꼽힌다. 앞서 2024년 말 4나노 생산을 시작한 애리조나 1팹은 최근 애플, 엔비디아, AMD 등 주요 고객사용 첫 웨이퍼를 성공적으로 출하했다. 다만 이 칩들은 첨단 패키징을 위해 다시 대만으로 운송됐다. 주요 고객사들이 비용 일부를 떠안겠지만, 최종적으로 소비자 제품 가격 인상으로 이어질 수 있다는 분석이다. TSMC의 웨이저자 회장은 앞으로의 로드맵에 대해 "1팹은 4나노, 2팹은 3나노 공정에 집중할 것"이라며 "이후 건설할 3, 4팹에서는 N2(2나노급)와 A16(1.6나노급) 같은 최첨단 공정을 도입해 기술 격차를 벌려나갈 것"이라고 밝혔다. 반도체 자립의 그림자…핵심인 첨단 패키징은 '대만 의존' 여전 그러나 미국 내 반도체 공급망 완성까지는 상당한 시간이 걸릴 전망이다. 핵심 공정인 첨단 패키징 시설 건설이 지연되는 탓이다. TSMC가 애리조나에 계획 중인 첫 첨단 패키징 공장(AP1)은 2026년 3분기에 착공하며, 본격적인 가동은 2029년쯤으로 예상된다. SoIC(시스템온인티그레이티드칩) 기술에 중점을 둘 이 공장이 완공되기 전까지, CoWoS 등 고성능 칩에 필수적인 첨단 패키징은 전적으로 대만에 의존해야 한다. 한편, TSMC는 미국 총 투자액을 1650억 달러(약 222조 원)로 확대한다. 여기에는 6개의 팹과 2개의 첨단 패키징 공장, R&D 센터 설립이 포함되며, 이를 통해 4만여 개의 건설 일자리와 수만 개의 고급 기술 일자리 창출이 기대된다. 실제로 엔비디아는 지난 1월 자사 4나노 칩이 TSMC 애리조나 1팹에서 생산에 들어갔다고 확인했지만, 로이터 통신은 이 칩들을 패키징을 위해 다시 대만으로 보내야 한다고 보도하며 미국 내 '칩 생산 완결'의 한계를 지적했다.
-
메타, '초지능 AI' 전담 연구소 설립⋯스케일AI 창업자 영입
페이스북 모회사 메타(Meta)가 인간을 뛰어넘는 인공지능(AI) '초지능' 개발을 위한 전담 조직을 공식 발표했다. 마크 저커버그 최고경영자(CEO)는 지난 달 30일(이하 현지시간) 사내 공지를 통해 '메타 초지능 연구소(MSL)' 설립과 함께, 스케일AI 창업자 알렉산더 왕을 최고 AI 책임자로 영입했다고 밝혔다. 냇 프리드먼 전 깃허브(GitHub) CEO도 공동 이사진으로 합류한다. 이와 함께 오픈AI, 구글 딥마인드, 앤스로픽 출신 연구원 11명을 채용했다. 이 소식에 메타 주가는 장중 최고가를 기록했다. [미니해설] 메타 '초지능' 개발 본격화⋯AI 슈퍼랩 출범에 시장도 화답 페이스북 모회사 메타플랫폼(메타)이 인간의 지능을 뛰어넘는 '초지능(Superintelligence)' 개발을 위한 전담 연구소 설립을 공식화하며, 글로벌 AI 패권 경쟁에 본격적으로 뛰어들었다. 마크 저커버그 메타 CEO는 6월 30일 사내 메모를 통해 '메타 초지능 연구소(Meta Superintelligence Lab, MSL)' 출범을 발표하고, AI 분야 최고 인재들을 대거 영입했다고 밝혔다고 정보통신(IT)전문매체 더 버지가 이날 보도했다. 저커버그는 "AI의 발전 속도가 가속화되며 초지능 개발이 현실로 다가오고 있다"며 "메타가 그 길을 선도하기 위해 모든 것을 쏟아붓겠다"고 강조했다. MSL의 지휘봉은 스케일AI 창업자이자 CEO였던 알렉산더 왕이 맡는다. 그는 메타의 최고 AI 책임자(CAI, Chief AI Officer)로서 전 조직을 총괄하게 되며, 수십억 달러 규모의 투자 계약과 함께 메타에 합류했다. 저커버그는 "알렉산더 왕은 그의 세대에서 가장 인상적인 창업"라며 그에 대한 전폭적인 신뢰를 드러냈다. 또한 왕과 함께 MSL을 이끌 파트너로 냇 프리드만 전 깃허브 CEO가 합류했다. 여기에 오픈AI, 딥마인드, 앤스로픽 등 글로벌 AI 선두기업 출신 연구자 11명이 새롭게 영입됐다. 특히 이들 중 다수는 오픈AI 핵심 연구진으로 업계에서 큰 주목을 받고 있다. '1억 달러' AI 인재 영입 논란 메타의 AI 인재 영입전은 단순한 스카우트 수준을 넘어선다. 앞서 샘 올트먼 오픈AI CEO는 한 팟캐스트에서 "메타가 우리 연구원들에게 1억달러(약 1360억 원) 보상 패키지를 제안했다. 이건 미친 짓"이라고 비난할 정도였다. 지난주 여러 외신에 따르면 8명의 오픈AI 연구원이 메타로 이동한 것으로 전해졌다. 테크 전문 매체 와이어드가 입수한 오픈AI 내부 메모에 따르면 마크 첸 오픈AI 최고연구책임자(CRO)는 지난달 28일 메타의 공격적인 인재 영입에 대해 직원들에게 보낸 메모에서 "지금 누군가 우리 집에 침입해 무언가를 훔쳐 간 것 같은 느낌"이라고 표했다. 블룸버그 보도에 따르면 메타는 실제로 '8자리 수' 연봉을 제안하며 AI 전문가 유치에 총력을 기울이고 있다. 메타는 인재 확보 외에도 외부 기업 인수를 통한 기술 확보에도 나섰다. 미국의 생성형 AI 기반 검색 엔진 서비스이자 동명의 AI 기업 '퍼플렉시티(Perplexity)', 일리야 수츠케버가 설립한 AI 스타트업 '세이프 슈퍼인텔리전스(Safe Superintelligence, SSI)', 미라 무라티의 AI 스타트업 '싱킹머신 랩(Thinking Machines Lab, TML)' 등에 인수 의사를 타진했으나, 아직 공식 제안 단계로 이어진 경우는 없다고 알려졌다. '초지능 구현'에 메타 주가 급등 MSL의 주요 목표는 인간 수준의 범용 인공지능(AGI)을 넘는 '초지능' 구현이다. 이는 구글 딥마인드, 오픈AI, 앤스로픽 등 경쟁사들이 장기적으로 설정한 목표와도 일맥상통하지만, 메타는 그 일정을 더욱 앞당기려는 의지를 보이고 있다. 저커버그는 CNBC가 공개한 메모에서 "내년부터 차세대 모델 연구에 착수할 계획"이라고 밝혀, AI 개발 로드맵의 가시적인 시점을 처음으로 언급했다. 메타의 이번 행보는 단순한 연구 차원을 넘어 주가에도 영향을 미쳤다. 초지능 연구소 설립이 공식화된 2025년 6월 30일, 메타 주가는 장중 52주 신고가인 747.90달러를 기록했으며, 최종 738.09달러에 마감했다. 전날 종가(733.63달러) 대비 0.61% 상승한 수치다. AI 산업, '무한 경쟁' 단계 AI 산업은 현재 거대 자본과 인재, 연산 인프라를 동원한 '무한 경쟁' 단계로 접어들었다. 특히 초지능 개발은 단순한 기술 선도 차원을 넘어 인류 사회의 구조를 바꿀 잠재력을 지닌 영역으로, 주요 빅테크들이 가장 민감하게 반응하는 분야다. 메타의 이번 MSL 출범은 그 연장선에 있다. 메타는 이미 오픈소스 기반의 대규모 언어모델(LLM) '라마3(LLaMA)'을 통해 상업성과 기술력을 동시에 입증한 바 있다. 하지만 오픈AI의 챗GPT, 인공지능 연구소 미드저니(Midjourney), 구글 제미나이 등 경쟁사 대비 사용자 접근성과 브랜드 인지도 면에서 다소 뒤처져 있다는 평가를 받아왔다. 이에 따라 메타는 이번 MSL 출범을 통해 AI분야 '2인자' 이미지를 벗고, 기술 리더십을 확고히 하겠다는 의지다. AI 전문가들은 MSL 출범이 단기간 내 성과를 낼 수 있는 프로젝트는 아닐 것으로 보고 있다. 초지능이라는 개념 자체가 현재의 AGI보다 한 단계 높은 추상적 개념이기 때문이다. 하지만 메타가 이 분야에 대한 선도적 투자를 단행함으로써, 기술 주도권 뿐만 아니라 규제 환경과 윤리적 기준 설정에서도 목소리를 높일 수 있을 것으로 분석된다. 이번 메타의 결정은 기술의 방향성 뿐만 아니라 AI를 둘러싼 글로벌 권력지도에도 적지않은 파장을 일으킬 전망이다.
-
6월 수출, 반도체·자동차 덕에 전년 대비 4.3% 증가⋯역대 6월 최대
한국의 6월 수출이 598억달러로 전년 대비 4.3% 증가하며 한 달 만에 증가세를 회복했다. 산업통상자원부는 1일 이 같은 내용의 수출입 동향을 발표하며, 반도체 수출이 11.6% 증가한 149억 7000만 달러로 사상 최대를 기록했고, 자동차 수출도 63억달러로 6월 기준 역대 최고치를 달성했다고 밝혔다. 미국의 관세 조치에도 불구하고 EU와 중고차 수출 확대가 실적을 끌어올렸다. 6월 무역수지는 90억 8000만 달러 흑자를 기록했다. [미니해설] 관세 역풍에도 반도체·자동차가 견인…6월 수출, 전년比 4.3%↑ '역대 6월 최대' 미국의 관세 압박에도 한국의 6월 수출이 전년 동기 대비 4.3% 증가하며 역대 6월 기준 최고 실적을 경신했다. 지난 5월 감소세로 돌아섰던 수출은 단 한 달 만에 반등했다. 산업통상자원부가 1일 발표한 '2025년 6월 수출입 동향'에 따르면, 6월 수출은 총 598억달러로 집계됐다. 이는 지난해 같은 달 대비 4.3% 증가한 수치이자 6월 기준 역대 최고 실적이다. 월간 수출은 2023년 10월부터 올해 1월까지 15개월 연속 증가세를 보이다 1월 한 차례 감소로 전환한 뒤 다시 증가세를 유지하다 5월 감소했으나, 6월 들어 다시 플러스로 전환됐다. 주요 견인차는 단연 반도체였다. 6월 반도체 수출은 149억 7000만달러로, 전년 동기 대비 11.6% 늘어나며 사상 최대 월간 실적을 다시 썼다. 고대역폭 메모리(HBM), DDR5 등 고부가 제품의 수요와 반도체 고정가격 상승이 주효했다. 이로써 반도체 수출은 3월 이후 4개월 연속 증가세를 이어가고 있다. 자동차도 선전했다. 자동차 수출은 63억달러로 2.3% 증가하며 역시 6월 기준 역대 최대를 기록했다. 미국의 관세 여파로 대미 수출은 감소했지만, 유럽연합(EU)으로의 전기차 수출 증가와 중고차 수출 확대로 전체 실적을 끌어올렸다. 바이오헬스(16억 6000만달러, 36.5%↑), 선박(25억달러, 63.4%↑), 컴퓨터(13억달러, 15.2%↑), 자동차부품(18억달러, 2.4%↑) 등도 강세를 보이며 15대 주력 품목 중 6개 품목이 수출 증가를 기록했다. 농수산식품(10억 3000만달러, 7.7%↑), 화장품(9억 5000만달러, 22.0%↑), 전기기기(15억 8000만달러, 14.8%↑) 등 비주력 품목에서도 기록적인 실적이 나왔다. 반면, 유가 하락 영향으로 석유제품(36억 2000만달러, 2.0%↓)과 석유화학(33억 6000만달러, 15.5%↓) 수출은 감소했다. 지역별로는 미국으로의 수출이 112억 4000만달러로 0.5% 줄며 보합세를 보였다. 중국으로의 수출도 104억 2000만달러로 2.7% 감소했다. 반면, EU 수출은 전년 대비 14.7% 증가한 58억달러로 4개월 연속 증가세를 기록했다. 아세안 수출은 2.1% 증가한 97억 6000만달러로 반등했고, 인도(2.3%), CIS(18.5%), 중남미(3.3%), 일본(3.0%), 중동(14.8%), 대만(31.0%) 수출도 늘었다. 수입은 총 507억 2000만달러로 전년 대비 3.3% 증가했다. 에너지 수입은 원유·가스 수입이 줄어 14.7% 감소한 85억 5000만달러를 기록했고, 반도체 장비 등 비에너지 수입은 7.9% 증가한 421억 7000만달러였다. 이로써 6월 무역수지는 90억 8000만달러 흑자를 기록했다. 이는 2018년 9월 이후 최대 규모로, 한국 무역이 안정적인 흐름을 유지하고 있음을 보여준다. 한국의 무역수지는 2023년 6월부터 계속 흑자를 기록 중이며, 올해 1월에만 잠시 적자를 나타낸 바 있다. 2024년 상반기 전체 수출은 3347억달러로 지난해 같은 기간과 비교해 사실상 동일한 수준(-0.03%)이었다. 반도체는 상반기 기준으로도 733억달러(11.4%↑)를 기록하며 역대 상반기 최대 실적을 달성했다. 반면, 자동차 수출은 364억달러로 1.7% 감소했다. 미국의 관세 부과와 현지 생산 확대가 원인으로 지목된다. 대미 수출은 622억달러로 3.7%, 대중 수출은 605억달러로 4.6% 각각 감소했다. 상반기 수입은 전년 대비 1.6% 줄어든 3069억달러로 집계됐다. 이에 따라 상반기 무역수지 흑자는 278억달러로 전년보다 48억달러 개선됐다. 안덕근 산업부 장관은 "미국의 관세 조치와 중동 불안, 글로벌 경기 둔화라는 악조건 속에서도 수출은 선방하고 있다"며 "정부는 한미 협상에 총력 대응하는 동시에, 무역금융 확대와 대체시장 개척 등 수출 기업을 위한 실질적 지원책을 조속히 마련하겠다"고 밝혔다.
IT/바이오 Home >  IT/바이오
-
-
동공 팽창으로 알츠하이머병 조기 진단 성공
- 샌디에이고 대학의 연구팀이 동공 팽창을 통해 알츠하이머병의 조기진단이 가능하다는 연구 결과를 발표했다. 24VITA 매체에 따르면, 이 연구팀은 치매와 관련된 인지검사 중 동공의 팽창 정도를 측정하여 알츠하이머병의 진행 상태를 확인했다. 이러한 결과는 국제학술지 '노회 신경생물학'에 게재되어 전문가들의 주목을 받고 있다. 연구원들은 "동공의 팽창 정도는 뇌의 활동과 연관되어 있으며, 알츠하이머병과 같은 치매의 초기 증상을 감지하는 데 중요한 역할을 할 수 있다"고 설명했다. 뇌의 동공 반응은 청반(locus coeruleus)이라는 인지 기능과 관련된 뇌 부위에 의해 조절된다. 타우 단백질은 알츠하이머병 발병에 영향을 미치는 주요 요인 중 하나로 알려져 있다. 타우 단백질 자체는 정상 상태에서 뇌에 해로운 영향을 주지 않는다. 그러나 이 단백질이 비정상적으로 접히면 '신경 섬유 다발(neurofibrillary tangle)'을 형성하게 되어 뇌의 기능에 영향을 끼친다. 뇌에서 문제가 발생하면, 청반(locus coeruleus)은 동공의 크기를 조절하는 역할을 한다. 최근의 연구에서는 응집된 타우 단백질과 경미한 인지 장애 증상을 보이는 환자들이 일반인에 비해 동공이 더 크게 확장되는 것을 확인했다. 연구에 따르면, 증상 발현 이전에도 동공 움직임을 통해 알츠하이머 병의 유전적 위험성을 파악할 수 있다. 이는 알츠하이머 환자의 뇌 변화가 동공의 운동에 직접적인 영향을 주기 때문이다. 동공의 움직임을 관찰하는 방법은 알츠하이머의 위험도를 조기에 파악하는 선별 수단으로 활용될 수 있으며, 이를 통한 조기 발견은 효과적인 치료를 가능하게 한다. 의료 관계자는 "건강한 생활 습관과 꾸준한 신체 활동, 기억력 강화 훈련과 약물 조기 투여는 알츠하이머병의 진행을 지연시키는 데 도움이 되므로, 조기 발견이 가장 중요성하다"고 강조했다. 이번 연구로 알츠하이머병 조기진단에 새로운 방법론이 제시되었으며, 앞으로 이를 기반으로 한 치료 전략 개발이 기대된다.
-
- IT/바이오
-
동공 팽창으로 알츠하이머병 조기 진단 성공
-
-
나노기술 적용된 획기적 여드름 치료제 개발
- 사춘기 청소년들의 가장 큰 고민인 여드름. 연고를 발라보고, 약도 복용해보고, 깨끗이 세안도 해 보지만 크게 나아지지 않아 애를 먹인다. 사춘기 청소년의 85%에서 발견되고, 후유증으로 흉터가 남기도 하는 여드름은 한국 청소년들만의 문제가 아니다. 전 세계적으로 약 8억명, 미국에서만 4500만 명이 여드름과 전쟁을 벌이고 있다. 과학기술 매거진 '뉴 아틀라스(NEW ATLAS)'는 「나노스케일(Nanoscale)」저널에 게재된 남호주 대학(University of South Australia) 연구팀이 개발한 나노 기술을 사용한 여드름 치료제에 대해 소개했다. 여드름의 원인은 여드름 미생물(Cutibacterium acnes)이라고 불리는 피부 박테리아의 과도한 증식으로 발생한다. 일종의 만성 염증질환으로 면포, 구진, 고름물집, 결절, 거짓낭 등의 병변이 나타난다. 연구팀은 여드름을 유발하는 박테리아를 제거하기 위해 미세바늘과 초음파를 결합한 나노 기술을 통해 피부 병원균에 치명타를 줄 수 있었다. 사람의 머리카락 굵기보다 5만 배 더 작은 부드러운 나노입자를 사용해 일반적으로 나라신(Narasin)으로 알려진 항균 화합물(항생제)를 여드름의 주요 발병 지점인 탈피지샘단위(Pilosebaceous unit)에 전달했다. 모낭과 모간, 피지선은 여드름 미생물(Cutibacterium acnes)이 번식하는 곳이다. 또한 현재의 경구 및 국소 약물은 다양한 성분이 혼합되어 장기간 사용하면 세균 내성이 발생할 수 있어 치료하기가 매우 어려운 것으로 알려졌다. 이번에 개발된 치료법은 새로운 항생제를 표적에 직접 전달함으로써 다른 방법보다 목적지에 도달하는 데 100배 더 효과적인 것으로 입증됐다. 파티마 아비드(Fatima Abid) 연구원은 "여드름에 처방되는 경구용 약물은 다양하지만 부작용이 많고, 물에 잘 녹지 않아 대부분의 환자와 의사는 국소 치료를 선호한다"고 말했다. 아비드의 연구팀은 돼지 귀 피부를 모델로 사용해 나노 스케일 전달 수단을 NAR[농업 분야에서 기생충 질병 콕시디아증(coccidiosis) 예방을 포함한 다양한 용도의 폴리에테르 항생제]로 알려진 나라신을 적용했다. 나라신(NAR)은 지난 1986년 처음으로 닭에 대한 사용이 승인됐다. 이전에도 항원충제, 항진균제와 항바이러스제 효능이 있는 것으로 나타났다. 여드름 치료제로 나라신이 연구된 것은 이번이 처음이며, 표적에 집중된 전달 방법과 함께 여드름 미생물이 약물 내성을 발생시킬 위험을 줄인다. 남호주 대학 약학 연구자이자 교수인 산자이 가르그(Sanjay Garg)는 "미셀 제형은 나라신을 여드름 목표 지점에 전달하는 데 효과적이었으며, 화합물 용액은 피부층을 통과하지 못했다"고 말했다. 현재까지는 여드름을 치료하기 위해 피지분비의 조절, 털집과다각질화의 교정, 여드름 미생물 집락수 감소, 염증반응 억제 등의 방법을 사용해 왔다. 이번 연구는 나노기술을 사람을 위한 치료법으로 발전시킬 수 있는 문을 열었다는 평가를 받고 있다.
-
- IT/바이오
-
나노기술 적용된 획기적 여드름 치료제 개발
-
-
코로나19 후 '자연 치유' 움직임 확산
- "자연의 흐름을 따라 살면, 대부분의 질병으로부터 멀어질 수 있다." 이는 일본 도치기현 나스가라스야마시 소재 국민건강보험 7합 진료소에서 활약 중인 혼마 신지로 박사의 주장이다. 코로나19 팬데믹을 겪은 사람들에게 혼마 박사의 메시지는 많은 공감을 얻고 있다. 올해 혼마 박사는 '많은 이론보다 한 가지 실천'을 중요시하며, 봄부터는 다른 사람들에게 의존하지 않는 삶을 추구하기 시작했다. 자연 치유를 추구하는 그의 주장에는 음식, 물, 그리고 전기와 같은 기본적인 것들을 스스로 준비하는 자급자족의 삶을 지향한다는 메시지가 담겨있다. 일본의 유명 매체 '겐다이(Gendai, 現代)'는 혼마 박사와의 인터뷰를 통해 "우리의 생활이 자연에 얼마나 부합하는지는 장내 미생물의 상태로 판단 가능하다"며 "코로나19 이후 강조되는 마스크와 백신보다 중요한 것은 이러한 자연의 흐름을 따르는 것"이라는 그의 견해를 전했다. 바이러스에 효과적인 '약'은 없다 혼마 박사는 자연 치유에 대해 이해하기 쉽도록 감기에 대한 비유를 들었다. "소아과 감기 환자가 최근 늘었다"고 입을 뗀 혼마 박사는 "대부분의 감기는 바이러스에 의해 발생한다. 하지만 바이러스를 직접 치료하는 특별한 약은 존재하지 않는다"며, 의사들이 처방하는 약들은 대부분 증상을 완화시키기 위한 것이라고 강조했다. 그의 주장에 따르면 감기 등의 증상은 약으로 조절되고, 환자 자신의 자연 치유력이 결국 감기를 치료한다는 것. 여기서 '감기'라는 단어를 '인플루엔자' 또는 '신종 코로나'와 같은 다른 전염병으로 바꿔도 비슷한 치료 효과가 나타난다. 즉, 의사가 약을 주지 않더라도 사람들은 자신이 가진 치유력으로 대부분의 경우 질병에서 자연스럽게 회복된다. 질병을 멀리하는 간단한 예방법 많은 사람들이 건강을 지키기 위해 약을 복용하거나, 올바른 식사나 운동에 주력하곤 한다. 하지만, 진정한 건강의 기반이 되는 것은 무언가를 과하게 하는 것이 아닌, 오히려 '절제'에서 시작된다. 신체의 본래 기능을 극대화하려면 일상을 가능한 한 자연스럽게 유지하는 것이 핵심이다. 더욱이, 우리 몸의 건강은 크게 장내 미생물에 의해 좌우된다. 이 미생물을 건강하게 유지하는 것이 질병에서 멀어지는 생명의 원칙이다. 자연에 가까운 생활을 추구하는 것은 물론 중요하지만, 그와 동시에 포괄적이고 장기적인 시각을 갖고 자신의 건강을 과신하지 않는 접근법도 필요하다. '스스로 주도하는 건강' 최근 몇 년 동안 우리는 신종 코로나 바이러스의 확산, 디지털화 시대의 급속한 진전, 그리고 AI(인공 지능)의 등장과 같은 극적인 변화들을 목격했다. 혼마 박사는 "이 기간 동안 수많은 교훈을 얻었으며, 변화하는 세상 속에서 어떻게 적응할 것인가에 대한 도전을 받았다"며 "팬데믹과 그것이 초래한 사회적 변화들로 인해 무엇이 중요한지 더욱 명확하게 되었다"고 밝혔다. 그 핵심은 다른 사람들에게 너무 의존하기보다는 자신이 주도해야 한다는 것이다. 코로나 감염이나, 발병과 병이 악화되는 것뿐만 아니라 심지어는 사망 여부는 바이러스 등 외적 요인 결정하는 것이 아니라, 바로 자신의 면역력에 따라 달라진다. 그럼에도 불구하고 지난 2~3년 동안 우리는 '사람 간의 접촉 최소화', '손소독', '마스크 착용', '백신 접종' 등 외부적인 대응 방안에 크게 의존했다. 이러한 조치들이 감염 예방에 기여한 것은 사실이지만, 자기 주도적 건강관리의 중요성을 잊어서는 안된다. 아울러 이러한 조치들이 우리의 면역력과 저항력을 약화시킬 수 있는 부작용도 있다는 점도 간과해서는 안 된다. 일본은 한때 '세계 최고'의 마스크 착용률과 예방 접종률을 자랑했으나, 이후에 코로나19 감염률이 높아지는 것을 막지 못했다. 거듭 강조하지만, 단순히 외부적인 조치에 의존하기보다는 자신의 면역력을 강화하는 것, 즉 '자기 주도적인 대응'이 가장 효과적이라는 것이 혼마 박사의 주장이다. '자연을 따라가며 살아가자'는 메시지는 혼마 박사의 지금까지의 활동을 통해 꾸준히 확산돼 왔다. 그가 추구하는 자급자족의 삶은 "자신을 중심으로 살아가는 방식"을 의미한다. 이것은 스스로 생각하고, 스스로 결정하며, 직접 문제에 대처하고 그 결과를 스스로 책임지는 것이다. 최근 혼마 박사는 이상적인 환경을 찾아내어 그곳으로 이사를 결정했다. 사토야마 지역에 위치한 60년 된 주택을 구입한 것. 그는 숲과 같은 환경에서 새들의 노래를 들으며 다양한 생물들의 생명력을 바로 옆에서 느낄 수 있는 평온한 장소라고 설명했다. 자연 속에서 깨달은 삶의 원칙 혼마 박사는 "이 땅에서는 자연과 조화롭게 생활하고, 다른 이들과의 교류를 활발히 추구하면서 현재 건강한 몸을 가진 것에 감사하고, 그 힘을 최대한 발휘하고 싶다"며, "자연과의 조화로운 삶은 세상을 넓은 시각으로 바라보게 해주며, 자급자족의 실천은 다양한 문제를 해결하는 첫 걸음이 될 수 있다"고 강조했다. 그는 "모든 사람들이 자연의 방식을 따라 자신만의 풍요로운 삶을 디자인하고, 그것을 실천해서 행복과 건강을 찾기를 바란다"라고 말했다. 혼마 박사는 "여러분 한 사람 한 사람이 자연에 따라 자신의 방식으로 쾌적한 삶을 생각하고 실천하며 행복하고 건강하게 살기를 바란다"며 "인간뿐만 아니라 동물, 식물, 미생물, 심지어 지구 자체에도 좋은 것이 건강에도 좋다. 그것이 바로 자연과 조화를 이루는 삶의 본질이다"라고 강조했다.
-
- IT/바이오
-
코로나19 후 '자연 치유' 움직임 확산
-
-
폐수 분해해 전기 생산하는 대장균 개발
- 공장 폐수 속 유기물을 이용해 전기를 생산하는 날이 멀지 않았다. 스위스 연구팀이 대장균의 유전자 변형을 통해 폐수에서 자랄 수 있는 박테리아를 찾아냈다. 한국에서는 오폐수나 바닷물, 지하수 등을 정화하며 동시에 전기를 연속적으로 생산하는 분리막을 개발했다. 국제적인 주목을 받는 이 기술에 대해 일본의 온라인 매체 '기가진(Gigazine)'은 최근 스위스 연방 공과 대학의 논문을 인용, "이제 우리는 에너지를 사용하여 폐기물을 처리하는 것이 아닌, 폐기물 처리를 통해 에너지를 얻는 시대로 전환하게 될 것"이라고 전망했다. 스위스 연구팀을 이끄는 아르데미스 보고시안(Aldemis Bogosian) 교수는 일반 대장균의 유전자를 조작, 전기를 생산할 수 있는 '쉬와넬라 오나이덴시스(Shewanella oneidensis)'와 유사한 능력을 가진 박테리아를 개발하는 데 성공했다고 밝혔다. 이러한 연구 성과는 미래의 환경 보호와 지속 가능한 에너지 자원 확보 방안으로 큰 기대를 모으고 있다. 전기를 생산할 수 있는 능력을 지닌 박테리아가 탄생한다 해도 섬세하거나 특별한 먹이가 필요하고 번식에 많은 양의 에너지가 필요하면 실용적 가치가 떨어진다. 이에 연구팀은 스위스 로잔의 현지 맥주 양조장에서 폐수를 채취해 새로 개발한 대장균을 주입했다. 양조장 폐수에는 다량의 당분, 전분질과 맥주 효모 혼합물이 포함되어있어 그대로 흘려 버리면 미생물이 번식할 수 있다. 이에 양조장은 폐수를 배출하기 전에 곡물 세척과 탱크 세척 과정을 거친다. 보고시안은 "이것은 유기 폐기물을 처리하기 위해 에너지를 사용하는 것이 아니라, 유기 폐기물 처리와 동시에 전기를 생산하는 일석이조 시스템"이라며 "양조장 폐수로 실험했을 때 기존의 전기 미생물은 생존조차 할 수 없었지만, 우리가 개발한 전기 미생물은 폐기물을 먹고 비약적으로 증식할 수 있었다"고 말했다. 이번 연구의 응용 범위는 단순한 폐기물 처리에 그치지 않는다. 유전자를 조작한 대장균의 특징 중 하나는 다양한 물질로부터 전기를 생성할 수 있다는 점이다. 이는 미생물 연료 전지, 바이오센싱 등 여러 분야에서의 활용 가능성을 시사한다. 논문의 주저자인 모하메드 모지부는 박테리아 기반의 생체 전기 에너지 분야에 대한 기대감을 전하면서도, "기업들은 이 기술의 상용화를 위해 더 이상 기다릴 수 없다"며 아쉬워했다. 한편, 한국 기업인 SK에코플랜트는 폐수 처리를 위한 전기화학적 정화 기술의 실용성을 테스트하고 있다. 이 방법은 오염된 폐수에 전류를 가해 정화하는 방식으로 진행된다. 더불어 한국과학기술원은 동국대와 협력해 커피 찌꺼기를 활용, 중금속을 제거하는 필터의 개발에 성공했다. 또한, 한국생명공학연구원은 양돈 농가의 폐수를 희석 과정 없이 직접 정화하면서 동시에 폐수 내의 미생물을 효과적으로 관리하는 미세조류 기술 개발에 성공했다고 밝혔다. 최근 한국과학기술원(KIST)은 명지대학교 신소재공학과와 손을 잡고, 오폐수와 바닷물, 지하수와 같은 다양한 물 자원을 효과적으로 정화하며 동시에 전기를 지속적으로 생산할 수 있는 분리막 기술을 개발했다. 이처럼 세계 여러 나라의 연구팀과 기업들은 박테리아와 같은 친환경 에너지 생산이 가능한 방식으로 오폐수 정화 기술 개발에 적극 나서고 있다.
-
- IT/바이오
-
폐수 분해해 전기 생산하는 대장균 개발
-
-
美 나사, 1경 규모 금속 행성 탐사선 10월 발사
- 미국 텍사스주 크기의 행성이 엄청난 속도로 지구를 향해 돌진하고 있다. 미국 우주항공국(NASA)는 비행선을 보내 이 행성에 구멍을 뚫고, 핵탄두를 설치해 폭파하는 방법으로 행성을 둘로 쪼개는 아이디어를 낸다. 영화 '아마겟돈' 이야기다. 그런데 영화 같은 일이 실제로 벌어질 전망이다. 나사는 이번엔 행성을 폭파하는 것이 아니라 어떤 광물이 있는지 조사하기 위해 비행선을 발사한다. 독일의 날씨전문 누리집 '다스베터(daswetter)'에 따르면, 과학자들은 '16프시케(16 Psyche)'라는 이름의 소행성을 탐사할 예정이다. 이번 탐사는 행성의 구성을 파악하기 위한 것이다. 이 소행성은 지난 1852년 3월 17일 이탈리아의 천문학자 안니발레 드 가스프리스(Annibale de Gasparis)가 발견했으며, 소행성대에서 가장 무거운 10개의 소행성 중 하나로 꼽힌다. 과학자들의 이번 탐사는 행성의 형성과 관련된 금속 및 기타 구성 요소에 대한 탐색을 목적으로 한다. 우주는 끊임없이 새로운 비밀을 품고 있으며, 이를 탐사하는 과학자들의 노력은 계속 이어진다. 소행성 '16프시케'는 철, 니켈, 금 등의 금속 성분을 주요 구성 요소로 갖는다. 이러한 특징은 태양계를 구성하는 미행성 핵이 대체로 금속 성분으로 형성됐을 가능성을 시사하며, 과학계는 이 점에 큰 관심을 가지고 있다. 나사가 그린 위의 프시케 상상도처럼 이 소행성의 형태는 감자와 유사한 불규칙한 모양을 하고 있다. 어쩌면 편평한 타원형으로 보일 수도 있다. 적도를 가로지르는 가로 길이는 약 280km, 세로 길이는 232km로, 전체 표면적은 약 16만5800 ㎢에 이른다. 최근의 연구에서는 이 소행성의 주요 성분이 금속으로 되어 있다고 분석됐다. 일반적으로 유리와 모래에서 발견되는 금속성분과 규산염의 복합체로 이해하면 된다. 레이더를 통한 관찰과 소행성의 열관성 측정 결과, 프시케는 암석과 금속의 조합으로 이루어져 있을 가능성이 높다. 특히, 전체 부피 중 30~60% 정도가 금속성분으로 구성되어 있는 것이 확인됐다. 과학자들은 광학과 레이더 관찰을 이용해 프시케의 3D 모델을 구축했다. 이 모델에는 두 개의 함몰된 분화구가 포함되어 있다. 그 결과 소행성 표면에는 금속 함량과 색상에 상당한 차이가 있음이 드러났다. 이 소행성은 우리 태양계를 구성하는 요소 중 하나인 소행성 핵에서 파생된 대량의 금속성분으로 이루어져 있을 가능성이 높다고 과학자들은 추정하고 있다. 소행성 프시케는 태양계 형성 초기에 자주 일어났던 여러 차례의 격렬한 충돌을 견뎌낸 것으로 추정된다. 이는 우리에게 지구의 핵이나 다른 암석 행성의 핵이 어떻게 형성되었는지에 대한 통찰을 제공할 수 있다. 프시케는 태양으로부터 3억7800만~4억9700만km 떨어진 화성과 목성 사이의 태양을 공전한다. 이는 2.5~3.3AU(1AU, Astronomical unit, 지구와 태양 사이의 거리)거리로, 프시케가 태양 주위를 회전하는데 지구 시간으로 약 5년이 걸리지만, 자체 축(프시케의 하루)을 중심으로 한 번 회전하는 데는 4시간이 조금 넘게 걸린다. 나사는 2023년 10월 5일에 '프시케(Psyche)'라는 탐사선을 발사할 계획이다. 이 탐사선은 중력을 이용해 화성 상공을 지나가며, 이후 태양 전기 추진을 활용해 소행성에 접근할 예정이다. 탐사선이 소행성에 도착하면, 4개의 다른 궤도에서 탐사 활동을 시작한다. 주된 연구 목적은 프시케가 실제로 소행성의 핵심 부분인지 파악하는 것이다. '프시케 임무'의 핵심 과학적 목표는 행성 형성의 기본 구성 요소를 분석하고, 이전에 경험하지 못한 새로운 세계를 탐험할 계획이다. 연구팀은 프시케에 핵의 잔여 물질이 있는지, 그 연대는 어느 정도인지, 그리고 지구의 핵과 유사한 환경에서 형성되었는지, 그 표면의 특성은 어떠한지를 밝히려고 한다. 프시케 탐사 우주선과 태양전지는 테니스장 정도의 크기다. 우주선의 몸체는 소형 픽업트럭 보다 약간 크고, 높이는 농구 골대 정도다. 우주선에는 △금속성분과 규산염 성분을 구분할 수 있는 고해상도 멀티스펙트럴 이미저(Multispectral Imager) △ 소행성의 원소 구성을 감지하는 감마선 및 중성자 분광계, △ 잔류 자기장을 감지하고 측정하는 자력계, △ X-밴드 무선 통신 시스템을 사용해 중력장을 고정밀도로 측정하고 프시케의 내부 구조에 대한 정보를 얻을 수 있는 전파과학, △ 짧은 시간에 많은 데이터를 전송할 수 있는 심우주 광통신(DSOC) 등이 탑재된다. 16프시케가 예상대로 대량의 금속으로 이루어져 있다면 그 가치는 약 10조 달러(한화로는 약 1경3280조원)로 추정된다. 그러나 이번 탐사 임무의 주요 목적은 단순한 채굴이나 경제적 이익이 아니라 해당 행성의 구성물질을 파악하는 것에 있다. 미국과 일본 등 우주 강국은 다른 소행성 탐사 프로젝트도 활발히 진행 중이다. 2019년에 발사된 일본의 우주선 '하야부사2'는 2030년 이후 다른 소행성으로의 여정을 계획하고 있다. 나사의 '오시리스 렉스' 탐사선은 소행성 베누(Bennu)에서 수집한 샘플을 지구로 가져오기 위해 오는 9월24일 복귀할 예정이다.
-
- IT/바이오
-
美 나사, 1경 규모 금속 행성 탐사선 10월 발사
-
-
플라스틱 먹는 '효소' 연구 활성화⋯고비용 과제
- 플라스틱을 먹는 효소가 개발이 활성화돼 폐플라스틱 처리에 힘을 보탤 전망이다. 환경오염 주범으로 꼽히는 지구를 뒤덮은 폐플라스틱을 재활용하기 위해 수 많은 연구팀들은 다양한 해결책을 찾고 있다. 특히, 벌집나방 애벌레와 같은 생물학적 자원 활용은 소각이나 매립보다 환경친화적으로 플라스틱을 처리하는 유용한 도구가 될 수 있다. 미국 생화학·분자 생물학 매거진 'ASBMB 투데이'에 따르면, 스페인 생물학자 페데리카 베르토치니(Federica Bertocchini)는 약 10년 전 벌집나방의 애벌레가 플라스틱의 일종인 폴리에틸렌을 먹어 치운다는 사실을 발견했다. 폴리에틸렌은 플라스틱 용기 등을 만드는 데 흔하게 이용되지만, 잘 분해 되지 않는 특성이 있어 폐기가 어렵다는 단점이 있다. 최근 과학자들은 매립지나 자동차폐차장 등을 찾아다니면서 플라스틱을 분해할 수 있는 유기체를 찾고 있다. 이를 채취해 플라스틱의 구성 요소를 회수하는 효율적인 방법을 찾길 기대하고 있는 것. 이후 새로운 재료를 조합해 ‘무한 재활용’이 가능하도록 한다는 계획이다. 영국 포츠머스대 효소혁신센터 존 맥기한(John McGeehan)은 "놀랍게도 전 세계의 수백 개 그룹과 수천 명의 과학자들이 이 문제를 연구하고 있다"고 설명했다. 폐플라스틱, 환경오염 주범 플라스틱은 1950년대 들어 본격적으로 생산됐고 생산량도 급증했다. 매년 약 4억6000만 톤에 가까운 플라스틱이 생산되는 것으로 추정된다. 하지만 이렇게 생산된 플라스틱은 아쉽게도 소각하거나 매립지에 묻히고 있다. 플라스틱은 지구상의 심해나 극지방을 비롯해 비를 타고 내려오거나, 심지어 태반이나 모유, 사람의 혈액에서도 흔적이 보고 되는 등 우리 눈에 보이지 않는 구석구석까지 침투했다. 이처럼 플라스틱은 건강과 환경 문제와 직접 연결되어 있다. 그럼에도 수요는 줄어들지 않고 있으며, 생산량은 오는 2050년까지 10억 톤을 넘길 것으로 예상된다. 플라스틱은 가볍고, 형태를 잡기 쉬운 특성 때문에 이를 대체할 마땅한 소재가 없기 때문이다. 현실적으로 모든 플라스틱을 교체하거나 재활용할 수 없다는 점에서 차선책은 덜 만드는 것이다. 또 약 9%에 불과한 전 세계 플라스틱 재활용률을 높이는 것이 과제다. 하지만, 재활용 과정에서 유해한 화학물질을 흡수할 수 있으며, 수천 가지의 플라스틱 유형에는 각각 고유한 구성과 화학 첨가물이나 착색제가 들어 있어 대다수는 재활용할 수 없는 것이 문제다. 효소 재활용 회사 버치 바이오사이언스(Birch Biosciences) 공동 창립자이자 합성 생물학자인 요한 커스(Johan Kers)는 "우리는 심각한 플라스틱 순환성 문제를 안고 있다"며 "알루미늄과 종이 등은 재활용할 수 있지만 플라스틱 재활용은 힘들다"고 지적했다. '자연'에서 착안한 '효소' 주목 캘리포니아대학교 버클리 캠퍼스 고분자 과학자 팅 쉬(Ting Xu)는 "효소를 통한 접근법은 폐플라스틱을 폐기물의 원천이 아닌 귀중한 자원으로 전환시킬 수 있다"고 설명했다. 이미 1970년대에 플라스틱을 먹는 효소에 대한 연구가 시작됐다. 그러다가 2016년 일본 과학자팀이 사이언스 학술지에 플라스틱을 먹는 획기적인 박테리아의 새로운 변종에 대한 논문을 발표하면서 효소 연구에 다시 불을 지폈다. 교토공과대학 미생물학자 코헤이 오다(Kohei Oda)가 이끄는 연구팀은 이데오넬라 사카이엔시스(Ideonella sakaiensis) 201-F6이라고 불리는 미생물이 음료수병과 섬유에 널리 사용되는 폴리에스터인 PET 플라스틱을 주요 에너지와 식품 공급원으로 사용한다는 사실을 발견했다. 그 이후로 과학자들은 독일 라이프치히 묘지의 퇴비 더미, 그리스 하니아(Chania) 해변 등 전 세계 여러 장소에서 플라스틱을 먹는 미생물을 발견했다. 그리고 바다, 북극 툰드라 표토, 사바나 및 다양한 숲을 포함한 환경에서 자유롭게 떠다니는 DNA에서 발견된 2억 개 이상의 유전자에 대한 대규모 분석을 통해 플라스틱 분해 가능성이 있는 3만 개의 다양한 효소가 있다는 것을 찾아냈다. 맥기한은 콜로라도를 포함해 다른 지역의 국립 재생 에너지 연구소(National Renewable Energy Laboratory)의 동료들과 함께 이데오넬라 사카이엔시스의 플라스틱 섭취 능력을 담당하는 두 가지 효소를 조작해 성능을 높이고 연결해 플라스틱을 분해할 수 있는 효소 칵테일을 만들었다. 그 결과 이전보다 6배 더 빠르게 PET를 분해할 수 있었다. 최근 과학자들은 인공지능(AI)을 사용해 플라스틱을 더 빠르게 해중합[해중합은 유색 페트(PET)병이나 폴리에스터 섬유 등 플라스틱 분자를 화학적으로 분해하는 기술]하고, 표적 기질에 대해 덜 까다롭고, 더 높은 온도를 견딜 수 있는 효소를 찾아내고 있다. 초기 데이터에 따르면 생물학적 효소를 이용한 재활용은 플라스틱을 새로 만드는 것보다 탄소 배출량이 더 적은 것으로 알려졌다. 탄소와 산소가 얽혀 있는 PET 재활용 플라스틱은 생물학적 재활용에 가장 적합하다. 영국 포츠머스 대학교의 분자 생물물리학자 앤디 픽포드(Andy Pickford)는 이 물질이 '일종의 아킬레스건'이라고 말했다. PET은 탄소가 산소와 얽혀 있다. 직물과 음료수병에서 흔히 발견되며 매년 생성되는 플라스틱의 약 5분의 1을 차지하는 PET는 생물학적 재활용 업체들 사이에서 인기 있는 대상이자 상업적으로 이용 가능한 제품이기도 하다. 실제로 프랑스 회사 카르비오(Carbios)는 연간 5만 톤의 PET 폐기물을 재활용하는 것을 목표로 2025년 프랑스 북부에 바이오 재활용 공장을 열 계획이다. 호주에 본사를 둔 삼사라에코(Samsara Eco)는 2024년 멜버른에 PET에 초점을 맞춘 2만 톤 규모의 재활용을 계획하고 있다. 플라스틱 유형을 연구하고 있는 픽퍼드(Pickford)는 "PET와 유사한 화학적 구성을 가진 폴리아미드와 폴리우레탄도 본질적으로 효소에 의해 분해되기 쉬워 효소 재활용의 유망한 대상"이라고 말했다. 삼사라에코는 합성 폴리아미드의 일종인 나일론을 연구하고 있다. 지난 5월 버려진 옷으로 '세계 최초의 무한 재활용' 나일론-폴리에스테르 의류를 생산하기 위해 인기 운동복 브랜드 룰루레몬(Lululemon)과 다년간의 파트너십을 발표했다. 아직은 연구가 미진하지만 연구원들은 폴리우레탄을 분해하는 미생물에 대해서도 연구 중이다. '슈퍼웜' 유충 활용 기술 향상 효소 재활용은 순수 탄소 골격을 가진 플라스틱의 경우 전망은 흐리다. 비닐봉지를 만드는 데 사용되는 폴리염화비닐(PVC), 폴리비닐알코올(PVA), 폴리스티렌 및 폴리에틸렌을 포함하는 제품은 기름기가 많아 투입된 효소를 붙잡을 수 없기 때문이다. 그런데 페데리카 베르토치니는 데메트라(Demetra)와 세레스(Ceres)라는 이름을 붙인 왁스 벌레 타액에서 플라스틱 분해 효소를 확인했다. 이 효소는 탄소 골격에 산소를 주입해 실온에서 몇 시간 내에 폴리에틸렌을 분해하는 것으로 나타났다. 폴리스티렌을 연구하는 호주 퀸즈랜드 대학교의 미생물학자 크리스 린케(Chris Rinke) 박사는 '슈퍼웜(Superworm)'이라고 불리는 미국왕딱지벌레(Zophobas morio) 유충을 발견했다. 플라스틱을 기계적으로 작은 조각으로 파쇄하고 산소 원자를 투입해 '노화'한 다음 특수 기술을 사용해 해당 조각을 해중화하는 두 가지 과정을 통해 폴리스티렌을 분해한다. 린케 박사는 "곤충에서 발견되는 효소가 열쇠를 쥐고 있을 수 있다"고 말했다. 반면, 일부 전문가들은 생물학적 재활용 전망에 대해 낙관적이지 않다. 픽포드는 "아직 폴리에틸렌, 폴리프로필렌, PVC와 같은 폴리올레핀이 대규모 효소 재활용을 위한 현실적인 목표가 될 것이라고 확신하지 못했다"며 "이런 경우 재활용이 가능한 새로운 플라스틱을 만드는 방향으로 전환하는 것이 더 현실적"이라고 말했다. 한국의 경우, 2020년 포스텍의 차형준 교수 팀은 '산맴돌이거저리(Plesiophthalmus davidis)'라고 불리는 검은 딱정벌레의 유충에서 폴리스티렌 소화 능력을 부여한 장내 세균인 '세라티아 폰티콜라(Serratia Fonticola)'에 대해 보고했다. 또 다른 그룹은 PLA를 포함한 특정 유형의 생분해성 플라스틱을 분해할 수 있는 두 가지 저온 적응성 곰팡이 균주[고산 토양과 북극 해안에서 분리된 라크네룰라(Lachnellula)와 네오데브리에시아(Neodevriesia)]를 발견했다고 보고했다. 하지만 효소를 활용하는 프로세스를 확장하는 것이 얼마나 쉬울지, 그리고 확장된 환경이 어떤 모습일지는 불분명하다. 한편, UN은 오는 2024년 세계 최초의 글로벌 플라스틱 오염 조약을 만들 예정이다. 플라스틱 오염을 억제하는 것을 목표로 하며, 특히 재활용을 더 쉽게 하기 위해 플라스틱 제품의 생산 과 설계에 대한 새로운 규칙을 도입할 것으로 예상된다. 다음 해에는 워싱턴과 캘리포니아, EU에서 플라스틱 용기와 음료수병 재료의 25%를 재활용 플라스틱으로 규정하는 법률이 시행될 예정이다. 그러나 추가적인 변화와 인센티브가 없다면 이러한 노력은 물거품이 될 수도 있다는 지적이다. 화석 연료의 저렴한 가격으로 인해 순수 플라스틱이 저렴하게 유지되는 한 생물학적 효소 활용은 비용 면에서 경쟁력이 없기 때문이다. 맥기한은 "과거 석유 및 가스 산업이 혜택을 누렸던 방식으로 PET 또는 기타 생분해성 공정에 인센티브를 부여해야 한다"며 "생물학적 재활용 기술이 향상되면 새로운 플라스틱과 경쟁할 수 있을 만큼 비용면에서 효율적일 것"이라고 강조했다. 그럼에도 그는 "효소가 전체 플라스틱 문제를 해결하지 못하지만 이제 막 첫 걸음을 뗐다"며 향후 발전에 기대감을 드러냈다.
-
- IT/바이오
-
플라스틱 먹는 '효소' 연구 활성화⋯고비용 과제
-
-
외계 행성 'K2-18b', 생명 징후⋯메탄·이산화탄소 확인
- 미국 항공우주국(NASA)이 제임스웹 우주망원경을 통해 생명체가 존재할 가능성이 큰 행성을 찾아냈다. 소위 우주 강국으로 불리는 미국, 유럽, 인도, 중국, 러시아 그리고 한국과 일본 등은 최근 지구에서는 보이지 않는 달 뒷면을 탐사하기 위해 심혈을 기울이고 있다. 달 자원 탐사뿐만 아니라 자국의 과학기술을 뽐내기 위한 하나의 방편이기도 하다. 여기에 우주망원경도 첨단 기술이 대거 탑재되면서 우주에서 지구와 같은 생명체가 존재할 수 있는 행성을 찾고 있다. 마치 영화 '아바타'에서 행성을 찾는 것을 연상시킨다. 미국 미디어 바이트(The Byte)와 영국 매체 가디언에 따르면, 나사는 제임스웹 우주망원경을 통해 K2-18b에서 메탄과 이산화탄소 등을 발견해 생명체가 존재할 가능성이 있다고 밝혔다. 나사는 최근 제임스웹 우주망원경(JWST)으로 지구에서 120광년 떨어진 사자자리의 행성인 K2-18b의 대기 구성을 관찰한 결과 물로 이뤄진 바다와 해양 세계가 존재할 가능성을 발견했다고 밝혔다. K2-18b는 2015년 나사가 K2 임무에서 케플러 우주망원경을 통해 처음 확인했으며 앞서 지난 2019년 대기에 수증기가 있다는 관측 결과가 발표된 바 있다. 이 행성은 질량이 지구의 약 9배에 달하며, 지구보다는 크고 해왕성보다는 작은 질량을 지칭하는 이른바 '슈퍼지구'에 해당한다. 하이시언 행성 가능성 제임스웹 망원경은 K2-18b에서 지구상에 살아있는 유기체만이 생산할 수 있는 황함유화합물의 일종인 디메틸설파이트(DMS dimethyl sulfide)라 불리는 분자를 발견했다. 연구자들은 이 행성의 대기에서 메탄과 이산화탄소 존재를 확인했다. 이 행성은 바다로 덮여 있고, 수소가 풍부한 대기를 가진 '하이시언 행성'(Hycean planet, 대기에는 수소가 있고 표면에는 물이 있어서 생명체가 존재할 가능성이 있는 행성)일 가능성이 있다. K2-18b는 시스템상 거주 가능 지역에서 약 120광년 떨어진 사자자리의 차가운 왜성인 모항성을 공전한다. 이는 기술적으로 액체 물이 표면에 존재할 수 있을 만큼 별로부터 충분한 복사선을 받는다는 것을 의미한다. 이번 웹 망원경의 관측 결과 K2-18b의 대기에 메탄과 이산화탄소가 풍부하고 암모니아는 부족한 것으로 파악됐다. 나사는 "이는 이 행성의 수소 대기 아래에 물로 이뤄진 바다가 있을 수 있다는 가설을 뒷받침한다"고 설명했다. '미니 해왕성' 추정 외계 행성의 일종 K2-18b는 지구와 해왕성 크기의 중간 규모로, '미니 해왕성(sub-Neptunes)'이라고 불리는 외계 행성의 일종이다. 이 행성들은 우리 태양계의 어떤 행성과도 매우 달라서 행성의 성질에 대해서는 오직 근거에 기인한 추측만 할 수 있다. 영국 카디프 대학교 슈바지트 사카르(Subhajit Sarkar) 교수는 "비록 이런 종류의 행성은 우리 태양계에는 존재하지 않지만, 미니 해왕성은 지금까지 은하계에서 알려진 가장 일반적인 유형의 행성"이라고 말했다. 그는 이어 "현재까지 거주 가능 구역 미니 해왕성의 가장 상세한 스펙트럼을 얻었으며 이를 통해 대기에 존재하는 분자를 밝히는 데 성공했다"고 설명했다. 그러나 K2-18b가 생명체로 가득 차 있다고 결론을 내리기에는 너무 이르다는 지적이다. 연구자들은 더 많은 데이터가 시급한 실정이라고 언급했다. 연구팀 책임자인 영국 케임브리지 대학 니쿠 마두수단(Nikku Madhusudhan) 교수는 BBC를 통해 "만약 (생명체가) 확인된다면 이는 엄청난 일이 될 것이며 올바른 판단을 해야 한다는 책임감을 느낀다"고 말했다. 마두수단 교수는 "가장 궁극적인 목표는 거주 가능한 외계 행성에서 생명체를 식별하는 것이다. 이번 발견은 이 연구에서 하이시언 세계를 더 깊이 이해하기 위한 첫 걸음"이라고 덧붙였다. 다행스럽게도 제임스웹 우주망원경의 MIRI(중적외선 장비) 분광기를 통해 더 많은 데이터가 수집되고 있다. K2-18b 행성에 실제 바다가 존재한다면 수소 대기 아래 외계 생명체 존재도 가능할 것으로 보인다. 한편, K2-18b는 지구 지름의 약 2.6배, 질량의 8.6배의 크기로, 수소가 풍부한 대기 밑에 바다 또는 얼음이 존재할 것으로 예상되는 행성이다. 중력이 지구보다 1.18배며, 0도에서 40도의 온도로 인간이 살기에 적합한 것으로 추정된다. 2019년 9월 BC는 영국 유니버시티 칼라지 런던(UCL)의 연구팀이 이 행성의 대기에서 수증기를 찾아냈다고 보도됐다. 물이 있다는 것은 생명체가 살고 있거나 살 수 있다는 강력한 신호로 풀이된다.
-
- IT/바이오
-
외계 행성 'K2-18b', 생명 징후⋯메탄·이산화탄소 확인
-
-
미로 자율 탐색하는 '뇌 없는 로봇' 탄생
- 미로를 탐색할 수 있는 뇌가 없는 소프트 로봇이 탄생했다. 과학 전문 매체 뉴로사이언스에 의하면, 노스캐롤라이나 주립대학(NCSU)의 연구원들은 물리적 지능을 사용해 미로와 같은 복잡한 환경을 자율적으로 탐색할 수 있는 '뇌 없는' 소프트 로봇을 설계했다. NCSU가 유튜브를 통해 공개한 '뇌 없는' 소프트 로봇의 모습은 팔이나 다리 머리가 없으며, 나선형 파스타 '로티니(Rotini)'를 연상시키는 정교하게 꼬인 생소한 이미지로 눈길을 사로잡았다. 이전 모델과는 달리 이 로봇은 장애물이 없어도 자체적으로 회전할 수 있다. 이러한 독특한 움직임은 한쪽 절반이 지면에 더 많은 힘을 가하도록 설계된 비대칭적인 디자인 덕분이다. 그로 인해 이 로봇은 둥글게 호를 그리며 움직이고 동적 미로를 횡단하며 평행한 물체 사이에 끼이지 않고 피해 갈 수 있다. 이 소프트 로봇은 '물리적 지능'을 통해 작동한다. 이는 구조적 설계와 재료에 따라 동작이 결정되므로 컴퓨터나 사람의 지시가 필요하지 않다. 이 로봇은 리본 모양의 '액정 엘라스토머'로 만들어져 있으며, 주변 공기보다 더 뜨거운 표면에 놓이면 움직이기 시작한다. 표면이 더 뜨거울수록 로봇은 더 빨리 움직인다. 역동적인 환경 탐색 가능 이 연구팀은 인간이나 컴퓨터의 지시 없이 간단한 미로를 탐색할 수 있는 소프트 로봇을 이미 제작했다. 이들은 이제 그 작업을 기반으로 더 복잡하고 역동적인 환경을 탐색할 수 있는 '두뇌가 없는' 소프트 로봇을 만들었다. '뇌 없는' 소프트 로봇에 관한「물리적으로 지능적인 자율 로봇 미로 탈출기」라는 논문은 사이언스 어드밴스(Science Advances) 저널에 지난 8일 게재됐다. 이 연구는 국립과학재단(National Science Foundation)이 지원했다. 이 논문의 공동 저자이자 노스캐롤라이나 주립대학교 기계 및 항공우주 공학부의 지에 인(Jie Yin) 교수는 "우리의 초기 연구에서 소프트 로봇이 매우 간단한 장애물 코스를 통해 비틀거나 돌릴 수 있다는 것을 보여주었다"며 "그러나 이전 모델은 장애물에 부딪히지 않으면 회전하지 못했다. 실용적인 측면에서 이는 로봇이 때때로 평행한 장애물 사이에 갇혀서 앞뒤로 튕길 수 있음을 의미한다"고 말했다. 그는 "이번에 우리는 스스로 회전할 수 있는 새로운 소프트 로봇을 개발했다. 이 로봇은 구불구불한 미로를 통과할 수 있으며, 움직이는 장애물을 우회할 수도 있다. 이런 모든 행동은 컴퓨터의 안내가 아닌 물리적 지능을 사용해서 이루어진다"고 설명했다. 여기서 물리적 지능은 소프트 로봇과 같은 역동적인 물체를 말하며, 그 동작은 컴퓨터나 인간의 개입으로 지시되지 않고 구조 설계와 구성 재료에 의해 제어되는 것을 의미한다. 온도에 반응하는 로봇 새로운 소프트 로봇은 이전 버전과 마찬가지로 리본 모양의 액정 엘라스토머로 제작됐다. 이 로봇을 주변 공기보다 뜨거운 섭씨 55도(화씨 131도) 이상의 표면에 놓아두면 움직이기 시작한다. 작동 원리는 표면에 닿는 리본 부분은 수축하지만 공기에 노출된 리본 부분은 수축하지 않는 것을 이용했다. 이것은 롤링 모션을 유도하며 표면이 따뜻할수록 로봇이 더 빨리 굴러간다. 이전 버전의 소프트 로봇은 대칭 디자인이지만 새 로봇에는 두 개의 별개의 반쪽이 있다. 다시 말하면, 로봇의 절반은 직선으로 뻗어 있는 꼬인 리본 모양이고 나머지 절반은 나선형 계단처럼 더 촘촘하게 꼬인 리본 모양이다. 이 비대칭적인 디자인 때문에 로봇의 한쪽 끝이 다른 쪽 끝보다 표면에 더 많은 힘을 가할 수 있다. 연구진은 바닥보다 입구가 넓은 플라스틱 컵을 예로 들었다. 이 컵은 테이블을 가로질러 굴리면 직선으로 구르지 않고 둥글게 호를 그리며 굴러가는 데, 컵이 비대칭적인 모양을 하고 있기 때문이다. 비대칭 디자인이 특징 논문의 제 1 저자이자 NCSU의 야오 자오(Yao Zhao) 연구원은 "우리의 새로운 로봇이 탄생한 배경에 있는 개념은 꽤 간단하다. 비대칭적인 디자인 덕분에 물체에 접촉하지 않고도 회전할 수 있다"고 말했다. 그는 "따라서 물체와 접촉할 때는 방향을 바꾸어 미로를 탐색할 수 있지만 평행한 물체 사이에 갇히지는 않는다. 대신, 호를 그리며 움직일 수 있는 능력은 본질적으로 자유롭게 움직일 수 있게 해준다"고 설명했다. 연구진은 비대칭 소프트 로봇 설계가 움직이는 벽이 있는 미로를 포함하여 더 복잡한 미로를 탐색하고 신체 크기보다 좁은 공간을 통과할 수 있는 능력 등을 테스트했다. 더 나아가 이들 연구원은 새로운 로봇 디자인을 서로 다른 환경인 금속 표면과 모래에서도 테스트했다. Yin은 "이 작업은 소프트 로봇 설계에 대한 혁신적인 접근법을 개발하는 데 도움이 되는 또 다른 진전이다. 특히 소프트 로봇이 환경에서 열에너지를 얻을 수 있는 응용 프로그램에 대한 것이다"라고 말했다. 로봇이 사람처럼 머리가 있고 팔과 다리가 있어야 한다는 선입견을 깬 이번 연구는 다양한 형태의 무궁무진한 로봇의 탄생을 예고했다.
-
- IT/바이오
-
미로 자율 탐색하는 '뇌 없는 로봇' 탄생
-
-
'역백신', 제1형 당뇨병·크론병 등 자가면역 질병 치료
- 제1형 당뇨병과 크론병 등 자가 면역질환을 역백신으로 치료하는 연구가 진행중이다. 중추신경계의 탈수초성 질환(demyelinating disease 신경세포의 축삭을 둘러싸고 있는 절연물질인 수초가 탈락되는 질병) 중 가장 흔한 유형인 다발성 경화증과 췌장에서 인슐린이 분비되지 않아 발생하는 제1형 당뇨병, 만성 염증성 장질환인 크론병을 정복할 수 있는 날이 코앞에 다가왔다. 과학기술 전문 매체 '사이테크데일리(SciTechDaily)’에 따르면, 시카고대학 프리츠커 분자공대(PME Pritzker Molecular Engineering) 연구팀이 '역백신(inverse vaccine)'을 개발해 자가면역 반응을 제거할 수 있음을 증명했다. 일반적인 백신은 인간의 면역 체계가 바이러스나 박테리아를 공격해야 할 적으로 인식하도록 만들지만, ‘역백신’은 한 분자에 대한 면역 체계 기억을 제거하는 정반대의 역할을 하도록 했다. 면역 체계 기억을 제거하는 것은 전염병의 경우 바람직하지 않지만 다발성 경화증, 제1형 당뇨병, 류머티즘성 관절염 또는 면역 체계가 사람의 건강한 조직을 공격하는 크론병에서 나타나는 자가면역 반응을 멈출 수 있다는 것이 연구팀의 설명이다. 최근 국제학술지 네이처 생명의학공학(Nature Biomedical Engineering)에 발표된 논문을 살펴보면, 역백신은 자연 과정에 의해 죽는 세포에 대한 자가면역 반응을 예방하기 위해 간이 자연적으로 세포 분해 생성물을 '공격 금지'로 표시하는 방식을 활용한다. PME 연구팀은 우리 몸의 간이 면역 체계가 공격하는 항원(면역 체계가 공격하는 분자)을 친구로 인식하는 노화된 세포 조각과 유사한 분자와 결합해, 이 백신이 어떻게 다발성 경화증과 유사한 질병과 관련된 자가면역 반응을 성공적으로 막을 수 있는지 보여줬다. 이번 논문의 주 저자인 제프리 허벨(Jeffrey Hubbell) 교수는 "이 연구에서 가장 흥미로운 점은 이미 염증이 진행 중임에도 다발성 경화증과 같은 질병을 치료할 수 있다는 것이며, 이는 실제 상황에서 더 유용하다"고 강조했다. 역백신으로 면역력 억제 면역 체계의 T세포(세포성 면역을 담당하는 림프구의 일종) 역할은 바이러스, 박테리아, 암 등 원치 않는 세포와 분자를 신체의 이물질로 인식해 제거하는 것이다. 그러나 T세포는 건강한 세포를 이물질로 인식하는 실수를 할 수 있다. 예를 들어, 크론병 환자의 경우 면역 체계는 소장 세포를, 다발성 경화증 환자의 경우에는 신경 주변의 보호 코팅인 미엘린을 공격한다. 허벨 교수와 그의 동료들은 면역 반응이 몸 전체의 모든 손상된 세포에 대해 발생하지 않도록 하는 메커니즘을 가지고 있다는 것을 주목했다. 이러한 현상은 간에서 일어나는 말초 면역 관용(Peripheral Immune Tolerance)으로 알려져 있다. 그들은 최근 몇 년 동안 N-아세틸갈락토사민(pGal)으로 알려진 당으로 분자를 태깅하면 이 과정을 모방하여 분자를 간으로 보내서 분자에 대한 내성이 생길 수 있다는 사실을 발견했다. 이 연구는 면역계의 작동 원리를 이해하는 데 크게 기여했으며, 미래의 의학적 치료법 개발에 중요한 토대를 제공한다. 허벨은 "우리가 원하는 분자를 pGal에 부착할 수 있고 면역 체계가 이를 견딜 수 있도록 가르칠 것"이라며 "백신처럼 면역력을 높이는 대신 역백신을 사용하면 매우 구체적인 방식으로 면역력을 억제할 수 있다"고 주장했다. 연구팀은 미엘린 단백질을 pGal에 연결하고 새로운 역백신의 효과를 테스트한 결과, 면역 체계가 미엘린 공격을 중단하고 신경이 다시 올바르게 기능하도록 하며 동물의 질병 증상을 완화시킬 수 있음을 발견했다. 일련의 다른 실험을 통해 과학자들은 동일한 접근 방식이 지속적인 면역 반응을 최소화하는데 도움이 된다는 것을 보여줬다. 제1상 안전임상시험 수행 허벨은 "오늘날 자가면역 질환은 일반적으로 면역 체계를 광범위하게 억누르는 약물로 치료되는데, 이는 매우 효과적일 수 있지만 감염을 막기 위해 필요한 면역 반응도 차단하므로 많은 부작용이 발생할 수 있다":고 지적했다. 대신 역백신으로 환자를 치료할 수 있다면 훨씬 더 구체적이고 부작용도 줄어들 수 있다는 설명이다. 허벨의 pGal 화합물을 사람을 대상을 하기 위해선 더 많은 연구가 필요하지만, 밀, 보리, 호밀 섭취와 관련된 자가면역 질환인 복강병 환자를 대상으로 초기 제1상 안전임상시험이 이미 수행됐다. 현재 다발성 경화증에서 임상시험이 진행 중이다.
-
- IT/바이오
-
'역백신', 제1형 당뇨병·크론병 등 자가면역 질병 치료
-
-
영국 정부, 11억 달러 규모 새 슈퍼컴퓨터·AI 연구 시설 구축
- 영국 정부가 인공지능(AI) 연구와 혁신 능력을 강화하기 위해 9억 파운드(약 11억 달러, 약 1조 4600억 원)에 달하는 슈퍼 컴퓨터를 구축 중이다. 영국 매체 네트워크 월드(Network World)에 따르면, 영국 정부는 인공지능(AI) 연구와 혁신 능력을 강화하기 위해 9억 파운드를 들여 슈퍼컴퓨터를 제작하고 있다고 발표했다. 이 슈퍼컴퓨터는 19세기 영국의 건축 및 기계 공학자 이점바드 킹덤 브루넬(Isambard Kingdom Brunel)의 이름을 따서 이점바드-3(Isambard-3)이라는 이름이 붙었다. 이점바드-3은 올해 말 브리스톨의 국립 복합 재료 센터(National Composites Centre)에 설치될 예정이다. 브리스톨 대학은 인터랙티브 인공 지능 박사과정을 위한 UKRI 센터의 본거지로 바스(Bath), 카디프(Cardiff), 엑서터(Exeter)를 포함하는 연구 집약적 대학의 연합인 GW4 대학 그룹에 속한다. 브리스톨 대학은 AI 연구 리소스(AI Research Resource 또는 Isambard-AI)를 호스팅하는 국가 시설이며, AI 연구를 지원하고 이 기술의 안전한 활용을 촉진하고 있다. 슈퍼컴퓨터와 이점바드-AI(Isambard-AI)는 지난 3월 정부에서 발표한 AI 투자를 통해 자금을 지원 받는다. 이 슈퍼컴퓨터는 수천 개의 최신 GPU로 구성되어 있다. 과학혁신기술부(DSIT, Department for Science, Innovation and Technology)가 발표한 성명서에 따르면 "유럽에서 가장 강력한 컴퓨터 중 하나"로 평가된다. 미셸 도넬란(Michelle Donelan) 과학혁신기술부 장관은 "우리는 영국 혁신의 미래를 지원하며, 브리스톨에 AI 연구 리소스를 설립함으로써 AI 개발의 선두에 서겠다"라고 밝혔다. 또 "이점바드-AI 클러스터는 유럽에서 가장 강력한 초고속 컴퓨터 중 하나가 될 것이며, 이는 산업 전문가와 연구자들이 AI의 게임 체인징(PoT) 가능성을 최대로 활용하는 데 큰 도움을 줄 것"이라고 기대했다. 도넬란 장관은 "이를 통해 우리의 프론티어 AI 테스크포스(Frontier AI Taskforce)가 수행하는 미션 크리티컬 작업도 지원할 것"이라고 덧붙였다. 그러나 브리스톨 대학 대변인은 슈퍼컴퓨터의 코어 수와 프로세서 유형과 같은 시스템 세부 정보에 관한 질문에는 아직 해당 초고속 컴퓨터의 세부 사양을 공개할 수 없다며 말을 아꼈다. 현재 이 대학은 이미 연구용으로 여러 슈퍼컴퓨터 클러스터를 보유하고 있고, 이들은 모두 리눅스(Linux)를 기반으로 운영된다. 블루크리스탈 페이즈 4(BlueCrystal Phase 4) 시스템은 주로 엔비디아(Nvidia) P100 GPU를 활용한 대규모 병렬 작업에 적합하게 설계됐다. 여기에는 2개의 그래픽 카드가 탑재된 32개의 GPU 노드가 포함되어 있다. 또한, 인텔(Intel) E5-2680 v4 (Broadwell) CPU를 사용하는 525개의 레노버(Lenovo) 컴퓨트 노드를 보유하고 있다. 이점바드-AI의 발표는 영국이 11월 1일과 2일 이틀동안 블레치리 파크(Bletchley Park)에서 개최 예정인 '글로벌 AI 안전 정상회의'를 앞두고 한 달 반 전에 이루어졌다. 리시 수낵(Rishi Sunak) 영국 총리는 지난 6월 워싱턴 방문 중 미국 대통령 조 바이든과 가진 회담에서 AI 안전 정상회의에 대해 처음 발표했다. 이 정상회의는 AI 기술의 위험과 발전에 대해 정부 관계자와 AI 기업, 연구자들이 모여 국제적인 협력 조치를 통해 해당 위험을 줄이는 방법을 논의할 예정이다. 글로벌 AI 정상회의 참가자들은 국제 AI 안전 협력 프로세스 제안, AI 안전 연구에서 협력할 수 있는 분야의 식별, 그리고 AI 개발을 통한 기술의 선한 활용 방안 등 다양한 주제에 중점을 둘 것으로 보다.
-
- IT/바이오
-
영국 정부, 11억 달러 규모 새 슈퍼컴퓨터·AI 연구 시설 구축
-
-
노스롭, 우주 궤도서 반도체 제조 도전…영국 스타트업과 기술 협약
- 미국의 대표적인 다국적 항공우주산업 제조회사 노스롭 그루먼(Northrop Grumman) 영국 법인은 우주 궤도에서 반도체를 제조하기 위해 영국 스타트업 스페이스 포지(Space Forge)와 파트너십을 체결했다. 디펜스뉴스에 따르면 두 회사는 지난 9월 12일 DSEI(Defence and Security Equipment International) 콘퍼런스에서 공동 협약을 발표했다. DSEI 콘퍼런스는 영국 국방부와 방위보안수출청이 주관하는 국제방산장비박람회로 지난 9월 12일부터 15일까지 런던 엑셀 전시장에서 개최됐다. 우리나라는 임종득 국가안보실 제2차장이 사이버 방산 협력을 위해 지난 11일부터 16일까지 4박6일 일정으로 런던을 방문했다. 이번 협약을 통해 노스롭은 기술과 비즈니스 자문을 제공하고 설계와 테스트에 협력할 예정이다. 또한 스페이스 포지에게 마이크로전자 개발에 대한 교육도 제공할 계획이다. 스페이스 포지는 우주 궤도에서 고성능 소재를 제조할 수 있는 우주선을 개발하겠다는 목표로 2018년 설립됐다. 올해 말 첫 발사 예정인 '포지스타(ForgeStar)' 우주선은 우주에서 최대 6개월 동안 머물면서 제조 임무를 수행한 후 재료를 싣고 지구로 귀환하도록 설계됐다. 웨일즈에 본사를 두고 있는 이 회사는 지난 4월 제조 사업을 미국으로 확장할 계획을 발표했지만, 아직 구체적인 내용은 밝히지 않고 있다. 스페이스 포지와 같이 우주에서 제조 역량을 구축하려는 초기 기업은 우주 환경, 특히 미세 중력이나 초고진공과 같은 조건에서 더 높은 품질의 재료를 생산할 수 있다. 또 3D 프린팅과 같은 특정 제조 공정의 효율성을 향상시킬 수 있다. 이 개념이 새로운 것은 아니지만, 최근 수십 년 동안의 기술 발전과 발사 비용 감소로 인해 특히 반도체나 제약 산업에서 비즈니스에 적용하는 것이 더욱 실현 가능해졌다. 노스롭의 영국, 유럽, 중동 및 북아프리카 우주 사업 부문 지역 책임자인 데이비드 파일은 우주에서 생산되는 반도체와 제약 산업은 궤도를 오가는 비용 때문에 처음에는 생산 비용이 더 비싸지만, 이러한 전문 분야 내에서 역량을 확장해 더 저렴하게 만드는 것이 목표라고 말했다 파일은 스페이스 포지와의 계약이 결국 노스롭의 반도체 공급망을 강화할 수 있는 파트너십의 첫 단계라고 설명했다. 노스롭은 미국 공군의 B-21 폭격기와 미국 육군의 통합 전투 지휘 시스템을 제작하는 방위산업체로, 원료를 반도체 칩으로 가공하고 이를 주요 무기 시스템에 통합한다. 이 방위 계약업체는 원자재를 주요 무기 시스템에 통합되는 반도체 칩으로 가공하는 두 개의 미국 파운드리(foundry, 반도체 제조를 전담하는 생산 전문 기업)를 보유하고 있다. 현재로서 노스롭의 역할은 주로 스페이스 포지가 궤도에서 생산한 재료를 가지고 지구로 돌아온 후에 확인하는 것이다. 파일은 노스롭이 이 스타트업에 재정 투자를 확정하지 않았다고 말했다. 그는 "우주 제조는 향후 수십 년 동안 크게 성장할 것으로 예상되는 분야이기 때문에 이들과 협력하고 싶다"고 말했다. 파일은 또 "우리 회사 전체에서 우리가 구축하는 전자 시스템이 얼마나 많은지 생각하면, 이것은 아마도 게임 체인저가 될 가능성이 있는 응용 분야가 많다"라며, 노스롭은 이 분야의 혁신을 주도하고자 한다고 전했다. 노스롭의 스티브 크라인 민간 및 상업용 우주부문 부사장은 "우주에서 제조하는 것은 다양한 산업 분야에서 다양한 기회를 열 수 있는 잠재력을 갖고 있다"고 말했다. 그는 "우주 탐사와 우주 내 서비스 분야의 글로벌 리더로서, 우리는 이 신흥 시장을 더 개발하기 위해 협력하기를 기대한다"고 덧붙였다.
-
- IT/바이오
-
노스롭, 우주 궤도서 반도체 제조 도전…영국 스타트업과 기술 협약
-
-
소니, 고령 로봇 개 재활용해 감정지원 서비스
- 약 20여년 전 개봉한 영화 '에이 아이(AI)'는 인공지능을 탑재한 로봇(데이빗)이 인간의 감정을 교차하는 이야기를 주 내용으로 다뤘다. 미래 시대에 인간을 위한 도우미로 로봇에게 사람의 감정을 이해하고 사랑을 느낄 수 있는 능력을 부여한 것이다. 영화 같은 이야기가 현실 세계에서도 일어날 가능성이 커지고 있다. 바로 일본의 대표 가전회사 소니가 로봇 개에 보육 프로그램을 내장해 의료 및 간호 시설에 재배치에 나선다. IT 전문 미디어 더 버지(The Verge)에 따르면, 소니는 의료 시설 등에 있는 환자들의 감정지원을 돕기 위해 기부된 중고 로봇 아이보(ERS-1000 Aibo) 장치를 수리해 의료시설에 재배치할 예정이다. 아이보는 2018년 출시된 소니의 인공지능 애완 로봇 개로, 큰 눈을 통해 다양한 감정을 드러내는 기능으로 사람과 교감이 가능한 제품이다. 다양한 행동과 소리뿐만 아니라, 실제 강아지의 몸짓 등을 흉내 내는 등 출시 당시 한국에서도 상당한 인기를 끌었다. 소니는 아이보를 평생 사용할 수 있도록 새로운 지속 가능 프로그램을 출시함으로써, 이 제품이 단지 크리스마스만을 위한 것이 아니라는 메시지도 전달했다. 이 프로그램에 기부된 아이보 장치를 테스트하고 수리한 후 의료 시설이나 간호 시설 등 이 로봇을 활용할 수 있는 여러 기관에 제공한다는 것. 또 아이보 '양부모' 서비스를 시작해 비공개로 비용을 청구할 계획이다. 소니 측은 일부 기금은 아이보 장치를 유지하고 수리하는데 사용한다고 밝혔다. 로봇 개 아이보는 음성과 장애물에 반응하며 심지어 가족 구성원을 인식하는 데 도움이 되는 코 카메라를 갖추고 있다. 이처럼 아이보는 실제 개와 상호 작용할 수 없는 사람들에게 소소한 기쁨을 주는 모방제품이다. 현재 일본은 감정지원 로봇에 큰 관심을 가지고 있다. 소프트뱅크가 선보인 소년 이미지 모습의 안내 로봇 '페퍼(Pepper)'와 일본 산업기술종합연구소의 심리치료 로봇 '파로(Paro)' 등을 예로 들 수 있다. 한편, 한국 연구진은 손으로 직접 접촉해 사람처럼 정서적 교감을 할 수 있는 로봇용 피부를 지난 2022년 개발했다. 한국연구재단에 따르면 '감정촉각피부'는 64개 촉각 센싱 셀을 가졌으며, 다양한 촉각 감정 구분과 감정 교류 가능성을 확인했다.
-
- IT/바이오
-
소니, 고령 로봇 개 재활용해 감정지원 서비스
-
-
인공지능(AI), 망막 영상으로 파킨슨병·안질환 진단
- 인공지능(AI)을 활용해 파킨슨 병을 감지하는 방법이 개발됐다. 과학 학술지 '네이쳐(Nature)'에 따르면, 연구원들이 망막 이미지 분석을 통해 안질환을 비롯해 다양한 건강 문제를 진단하고, 심지어 파킨스병까지도 예측하는 AI를 개발했다. 과거에는 연구원들이 질병을 진단하기 위해 160만개의 망막 이미지를 수집하는데 많은 비용과 긴 시간이 소요됐다. 그러나 최근 개발된 '렛파운드(RETFound)' AI 도구는 자가 지도 학습을 활용하여 효율적으로 학습한다. 이 도구는 수많은 예제를 활용해 망막 이미지의 누락된 부분을 예측하며, 망막의 구조와 특징을 깊이 파악한다. 런던 무어필드 아이 호스피털(Moorfields Eye Hospital)의 피어스 킨(Pearse Keane) 안과전문의는 "망막은 우리 신체에서 모세혈관 네트워크를 직접 관찰할 수 있는 유일한 부분"이라며 "망막 이미지를 통해 고혈압과 같은 전신 질환을 시각화할 수 있다"고 전했다. 연구팀은 이번 연구에서 160만개의 망막 이미지를 기반으로 'RETFound'를 훈련시킨 후, 파킨스병 환자와 비환자의 망막 이미지를 추가로 분석했다. 영국 버밍엄 대학교의 임상 연구원인 시아우수안 리우(Xiaoxuan Liu) 박사는 "RETFound는 성공적으로 의료 이미지 분석에 적용된 몇 안 되는 예시"라고 평가했다. 캘리포니아 스탠포드 대학의 커티스 랭로츠 교수는 자기 공명 이미지나 CT 스캔 같은 복잡한 이미지에서도 이 방법의 효과를 기대하며 지켜보고 있다고 밝혔다. 킨은 "각 나라에서 이 알고리즘을 적용하여 자체 데이터를 통해 최적화할 수 있다"고 강조했다. 이 모델은 공개적으로 이용 가능하며, 연구진은 전 세계 다양한 의료 환경에서 'RETFound'의 적용과 훈련을 기대한다. 다만, RETFound 기반의 다른 질병 감지 모델을 개발할 때에는 윤리적 안전성과 제한 사항의 투명한 소통이 중요하다.
-
- IT/바이오
-
인공지능(AI), 망막 영상으로 파킨슨병·안질환 진단
-
-
일본, 코로나19 후 학교 복귀 돕는 '로봇 어시스턴트' 도입
- 코로나19 팬데믹 이후 학교에 복귀하는 것을 어려워하는 학생들에게 원격 수업 참석 기회를 제공하기 위한 '로봇 어시스턴트'가 일본 학교에 도입될 전망이다. 영국 매체 더 가디언(The Guardian)에 따르면, 일본의 한 도시는 무단 결석률 상승에 따른 대책으로 로봇 어시스턴트를 활용할 계획이다. 교육 당국은 이 로봇을 통해 결석한 학생들이 원격으로 실시간 수업 참여를 유도해 점차 학교로의 복귀를 기대하고 있다. 일본 교육부 통계에 따르면 2022년 3월까지 초·중학생 중 30일 이상 학교를 거부한 학생이 역대 최다인 24만4940명에 달했다. 원인으로는 코로나19 팬데믹이 가져온 정신적, 신체적 스트레스가 큰 비중을 차지한다. 비록 정부는 학교 휴교령을 내리지 않았으나, 많은 학교에서는 코로나 확산 우려로 자발적으로 수업을 중단했고, 이로 인해 일상 교육 활동의 재개가 어려워진 상황이다. 마이니치 신문 보도에 따르면, 일본 남서부 구마모토 시의 몇몇 학교에서는 올해 11월 로봇 도입을 계획하고 있다. 이 로봇은 마이크, 스피커, 카메라가 탑재되어 있어 원격 학습하는 학생들도 실시간으로 수업에 참여하게 된다. 교사의 지속적인 지도는 필수이지만, 로봇의 도입으로 결석한 학생들이 학교 환경에 적응하는 데 도움을 받게 될 것으로 기대된다. 또한, 지역 교육 당국은 이 로봇은 교실에서만 활용되는 것이 아니라 학교 내 다양한 시설과 행사에서도 활동할 계획이라고 밝혔다. 최근 무단 결석 학생 수의 증가와 그 원인으로 지목되는 코로나19 팬데믹을 고려할 때, 이 같은 로봇 도입은 많은 학생들에게 새로운 학습 기회를 제공할 것으로 전망된다. 지난 1월 구마모토 지역의 여러 학교들은 결석 학생들을 위해 온라인 수업 스트리밍을 지원하는 학습 도우미를 선임해 학생들 사이에서 큰 호응을 얻었다. 수업 참여에 대한 피드백에서 한 학생은 가상 교실 활동이 자신의 자존감 향상에 큰 도움이 되었다고 밝혔다. 또 다른 학생은 온라인 상에서 교사와 동급생들과의 소통이 더 자연스럽고 덜 긴장된다고 평가했다. 시교육위원회 소속 한 관계자는 "로봇 도우미의 역할은 단순 수업 지원뿐만 아니라, 학생들이 가상 교실에서 자유롭게 활동하며 동급생들과 소통하는 기회를 제공하는 것"이라고 강조했다. 그는 또 "이러한 접근을 통해 결석 학생들의 정신적인 장벽을 낮추는 데 큰 도움이 될 것"이라고 기대했다.
-
- IT/바이오
-
일본, 코로나19 후 학교 복귀 돕는 '로봇 어시스턴트' 도입
-
-
영국 반도체 기업 '암(Arm)' 공모가, 최상단 51달러로 확정
- 미국 IPO(기업공개) 시장에서 올해 최대 관심을 받는 영국의 반도체 설계 전문 기업 '암(Arm)'의 공모가가 투자자들의 높은 관심을 받아 희망 공모가 범위의 최상단, 주당 51달러로 결정됐다. 연합뉴스가 보도한 미국 월스트리트저널(WSJ) 등 여러 외신에 따르면 13일 현지시간, Arm은 최종적으로 주당 51달러의 공모가격으로 결정했다. 이전에 Arm은 증권신고서에서 주당 47달러에서 51달러 사이의 희망 공모가 범위를 알렸다. 상장을 앞둔 Arm에 대한 투자자들의 강력한 수요가 이번 공모가격 결정에 큰 영향을 미친 것으로 보인다. 세계 최대 반도체 위탁생산 기업인 대만 TSMC는 Arm의 기업공개(IPO)에 최대 1억 달러(약 1327억 원)를 투자하겠다고 밝혔다. WSJ은 Arm의 공모가가 주당 51달러로 결정될 경우 회사의 전체 가치는 대략 545억달러(72조4000억원)에 이를 것으로 추산했다. 이는 지난달 소프트뱅크가 비전펀드로부터 Arm의 지분을 인수할 때 평가된 640억 달러보다는 적으나, 이전에 엔비디아에 판매될 때의 400억 달러나 시장 예상치인 450억~500억 달러보다는 큰 액수다. 현재 Arm의 모든 지분을 소유하고 있는 소프트뱅크는 이번 IPO를 통해 자사 지분의 약 10%를 매각해 약 50억 달러를 조달할 예정이다. 최근 Arm의 매출이 정체된 것과 중국 시장의 위험 요소에 대한 우려가 있음에도 불구하고, 인공지능(AI) 시장의 확장으로 매출 성장을 기대하고 있다. 한편, 소프트뱅크는 2016년 손정의 회장의 지휘 아래 Arm을 320억달러(약 42조6000억원)에 인수했다. 1990년 설립된 Arm은 반도체 설계 분야에서 세계적인 리더로, 주로 프로세서 아키텍처와 IP(Intellectual Property) 설계를 제공하는 기업이다. Arm은 실제 반도체를 직접 제조하지 않는다. 대신, 설계한 프로세서 아키텍처와 기술을 다른 기업들에 라이선스 형태로 제공하며, 이 기업들은 이를 바탕으로 실제 칩을 제조한다. Arm 프로세서는 에너지 효율이 뛰어나기로 알려져 있다. 이러한 특성 덕분에 배터리를 사용하는 모바일 장치에 많이 사용된다. 현대의 대부분의 스마트폰은 Arm 기반 프로세서를 사용하고 있으며, IoT(사물 인터넷)과 클라우드 컴퓨팅 시장의 확대와 함께 그 중요성이 계속해서 늘어나고 있다.
-
- IT/바이오
-
영국 반도체 기업 '암(Arm)' 공모가, 최상단 51달러로 확정
-
-
전기차 시장, '전고체 배터리'가 뜬다…10대 리드 기업 어디?
- 최근 전기차 업계가 주목하는 기술 중 하나는 '전고체 배터리'다. 이 기술은 기존 리튬 이온 배터리보다 에너지 저장 용량이 뛰어나고, 충전 시간도 단축되는 등 탁월한 성능을 자랑한다. 그렇다면 이 전고체 배터리는 기존 배터리와 다른 점은 무엇일까. 전고체 배터리는 이름에서도 알 수 있듯이 액체 전해질이 아닌 고체 전극과 고체 전해질을 사용한다. 이로 인해 배터리의 누출이나 열 문제가 크게 줄어들어 사용자의 안전을 더욱 보장한다. 게다가 작은 크기로도 높은 에너지 밀도를 구현할 수 있어 휴대성과 효율성 모두에서 높은 점수를 받는다. 시장의 변화에 민감하게 반응하는 글로벌 자동차 기업들도 전고체배터리 개발에 발빠르게 뛰어들었다. 토요타와 폭스바겐은 이미 전고체 배터리 기술 개발에 속도를 내고 있다. 이러한 대기업들이 전고체 배터리의 선봉에 서게 될 것인가, 아니면 다른 참여 기업들이 이를 따라잡거나 앞질러 나갈 것인가. 전기차 시장의 미래는 어떻게 전개될지 기대된다. 폭스바겐과 퀀텀스케이프는 전기 자동차용 고체 상태 배터리 기술 개발에 손을 잡았다. 전기차의 두 가지 큰 걸림돌인 '주행 거리'와 '충전 시간'을 해결하기 위해서는 향상된 '에너지 저장 능력'과 '빠른 충전'이 선결과제다. 이 두 마리 토끼를 잡을 수 있는 전고체 배터리는 소비자의 전기차에 대한 인식을 크게 바꿔놓을 것으로 보인다. 전고체 배터리 개발 진행중인 선도적인 10개 기업은 다음과 같다. 1. 도요타 토요타는 21세기 자동차 혁신의 핵심으로 전고체 배터리를 지목하며, 2027년까지 상용화를 목표로 연구개발을 가속화하고 있다. 도요타의 이러한 움직임은, 배터리가 전기차 업계의 핵심 부품임을 감안하면, 전기차 시장에서의 선두 주자로의 복귀를 알리는 신호로 해석된다. 그들은 이미 2012년부터 전고체 배터리 기술 개발에 뛰어들었고, 현재 200명 이상의 전문가로 구성된 팀이 이를 주도하고 있다. 그 결과, 토요타는 1000개 이상의 특허를 보유하게 되었다. 이 기업의 최종 목표는 전고체 배터리의 장점을 살려 완충 상태에서 약 700km (435마일)의 주행 거리를 달성하는 전기차와 하이브리드 차량을 출시하는 것이다. 2. 폭스바겐(Volkswagen) 폭스바겐은 전고체 배터리 연구의 선구자 중 하나인 퀀텀스케이프와 파트너십을 맺고 전기 자동차용 고에너지 밀도 배터리를 개발하고 있다. 2018년 폭스바겐은 퀀텀스케이프와 함께 전기차용(EV) 배터리 기술 개발을 추진했고, 2020년 추가적으로 2억 달러의 투자를 통해 이 연구의 가속화를 선언했다. 퀀텀스케이프는 기존 배터리 대비 전고체 배터리가 약 80% 더 긴 주행 거리와 80% 더 많은 충전량을 제공한다고 주장했다. 2022년 말 현재, 퀀텀스케이프는 전고체 배터리 셀의 시험을 진행 중이다. 폭스바겐은 다른 기업들과 협업하여 고체 상태 기술 및 전극 건조 코팅 공정과 같은 다양한 배터리 기술을 연구 중이며, 이를 2030년에 대량 생산에 투입할 계획이다. 3. 파나소닉(Panasonic) 전세계적인 전기차 시장의 확대와 함께 배터리 기술의 중요성이 강조되는 가운데, '파나소닉'과 '도요타'의 조합이 눈길을 끈다. 두 기업은 2020년 '프라임 플래닛 에너지 솔루션(Prime Planet Energy & Solutions, Inc.)'이라는 이름의 합작기업을 설립, 생산성과 용량 모두에서 우수한 배터리 솔루션을 제공하기 위해 노력하고 있다. 도요타는 이미 전고체 배터리 기술 관련 1000개 이상의 특허를 보유하고 있으며, 파나소닉도 445개의 특허로 그 기술력을 과시하고 있다. 파나소닉은 지난 수십 년 동안 배터리 기술을 선도해 왔다. 특히 전고체 배터리 기술 연구에 주력하며, 액체 전해질로 인한 화재, 폭발 위험 등의 문제점을 해결하고자 고체 상태 배터리로의 전환에 큰 희망을 걸고 있다. 파나소닉은 기술에 대한 구체적인 일정을 제공하지는 않았지만, 연구 및 개발에 적극적으로 투자하고 있다. 특히 도요타, 테슬라, 포드와 같은 국제적인 자동차 기업들과의 협력은, 전고체 배터리의 시장 출시 때 그들이 이 분야의 혁신을 주도할 가능성을 제시한다. 4. 베이징 웨이란신에너지기술(Beijing WeLion New Energy Technology) 중국 기업 니오(Nio)는 배터리 제조업체인 중국 베이징 웨이란신에너지기술(北京卫蓝新能源科技·Beijing WeLion New Energy Technology, 이하 '웨이란'-WeLion)과 파트너십을 맺어 새로운 배터리 기술을 선보였다. 이들 두 기업은 전기 자동차에 대한 반고체 상태 배터리 셀을 생산했다. 반고체 상태 배터리는 리튬 이온 배터리의 젤 전해질과 고체 전해질을 결합한 것이다. 니오는 특히 이번 파트너십을 통해 웨이란으로부터 150 kWh 용량의 반고체 배터리 셀을 공급받게 되었으며, 이 배터리는 'Nio ET7' 전기자동차에 적용될 예정이다. 이러한 혁신적인 기술을 탑재한 세단 'Nio ET7'은 CLTC 기준으로 약 1000킬로미터(621 마일), EPA 기준으로는 740킬로미터(460 마일)의 높은 주행 거리를 자랑한다. 또한, 이 배터리는 'Nio ES6 SUV'에도 적용되어, 약 689킬로미터(428 마일)의 주행 거리를 제공하게 된다. 5. 중국 CATL(Amperex Technology Co. Limited) 중국 배터리 대기업 CATL은 2023년 4월 전기 항공기 전동화를 향한 새로운 움직임을 위해 고체 상태 배터리 기술의 한 형태인 압축형 배터리 셀을 출시했다. 이 배터리 셀은 에너지 밀도가 500 Wh/kg로 매우 높다. 중국의 배터리 대기업 'CATL'은 2023년 4월 전기 항공기의 전동화를 목표로 고채 상태 배터리 기술의 한 형태인 압축형 배터리 셀을 출시했다. 이번에 선보인 배터리 셀은 무려 500 Wh/kg의 높은 에너지 밀도를 자랑한다. 반면, 테슬라가 자랑하는 4680 배터리 셀의 에너지 밀도는 244 Wh/kg에 불과하다. 이를 비교하면 CATL의 신제품은 기존 리튬 이온 배터리에 비해 약 두 배의 충전량을 가지고 있음을 알 수 있다. 이렇게 혁신적인 배터리 기술은 중국 지리자동차(Geely)의 2023년 형 전기차 '지커-001(Zeekr-001 EV)'에도 적용될 수 있으며, 해당 차량은 CLTC 기준으로 641 마일의 주행 거리를 달성할 수 있다. CATL의 압축형 배터리 셀은 이보다 훨씬 더 긴 주행 거리를 제공할 전망이다. 6. 혼다 혼다는 2050년까지 탄소 중립을 목표로 하고 있으며, 이를 위해 제너럴 모터스(GM)와 소니 같은 기업들과 파트너십을 맺어 고체 상태 배터리 기술을 연구하고 있다. 또한 혼다는 일본의 사쿠라에 4300억 엔 (약 2950만 달러)을 투자해 2028년까지 전기 자동차에 고체 상태 배터리 셀을 도입하는 생산 라인을 구축하는 작업을 진행 중이다. 고체 상태 배터리 기술의 가장 큰 단점은 세포의 무결성을 위협하는 덴드라이트(dendrites)의 존재다. 혼다는 덴드라이트 문제를 해결하기 위한 새로운 연구를 진행하고 있다. 이를 통해 2030년까지 연간 200만 대의 배터리 전기 자동차 생산을 목표로 하고 있다. 7. 닛산 닛산은 2028년까지 고체 상태 배터리로 구동되는 차량을 시장에 선보이기 위한 연구를 본격화했다. 가나가와에 위치한 닛산의 연구 센터에서는 2024년까지 고체 상태 셀 프로토타입을 생산하기 위한 공장 건립 작업이 진행 중이다. 고체 상태 배터리 기술 도입 후, 닛산은 EV 배터리 비용을 최소 50% 절감하며, 충전 능력을 현존하는 기술의 세 배로 향상시키고, 에너지 밀도를 두 배로 늘리는 것을 목표로 삼고 있다. 시장에서 현재 주목받는 최고 성능의 배터리 셀은 에너지 밀도 240 Wh/kg을 제공하는데, 닛산의 목표는 이를 480~500 Wh/kg로 높이는 것이다. 이외에도 닛산은 액체 전해질을 사용하지 않는 올 고체 상태 배터리와 나트륨을 활용한 셀에 대한 연구를 활발히 진행하고 있다. 8. 솔리드에너지시스템(SolidEnergy Systems) 솔리드에너지시스템(SES)은 치차오 후 박사(Dr. Qichao Hu)가 2012년에 매사추세츠주 워본(Woburn)에 설립했다. 이 회사는 리튬 금속 기술을 사용하며, 리튬 이온 배터리 셀에서 발견되는 전통적인 젤 대신 분리 막으로 사용한다. SES 리튬 금속 배터리 셀은 에너지 밀도가 400 Wh/kg이며, 전통적인 리튬 이온 배터리 셀의 주행 거리를 두 배로 늘릴 수 있다. SES는 안전하고 효율적인 배터리 개발에 중점을 둔다. 인공 지능 알고리즘을 활용해 배터리의 안전성을 향상시켰고, 가볍고 비용 효율적으로 제작될 수 있다. 게다가 15분만에 배터리의 80%까지 빠르게 충전할 수 있다는 것은 큰 강점이다. 차량 제조업체들과의 협력도 활발한 편이다. 제너럴 모터스(GM), 혼다, 현대자동차, 지리, 기아와 같은 주요 자동차 기업들과 파트너십을 체결하고 있다. 특히 2021년에는 GM이 SES에 1억 3900만 달러를 투자했으며, 2025년부터는 SES의 리튬 금속 배터리 셀을 자동차에 적용할 계획이다. 9. 솔리드 파워(Solid Power) 솔리드 파워는 2011년 콜로라도 대학의 스핀오프로 탄생했으며 현대자동차, BMW, 포드와 같은 글로벌 자동차 제조업체들의 후원을 받으며 빠르게 성장했다. 2021년에는 콜로라도 주의 손턴(Thornton)에 7만5000평방 피트(약 6967제곱미터) 규모의 최첨단 생산 공장을 설립했다. 솔리드 파워의 주요 기술은 전통적인 리튬 이온 배터리의 액체 전해질을 황화물 기반의 고체 전해질로 교체하는 것이다. 이 고체 전해질은 액체 전해질보다 안전하며, 안정적인 성능을 제공한다. 이 회사는 2028년까지 연간 80만 대의 전기차 배터리 셀 생산을 목표로 하고 있으며, 그를 위한 생산 확장 계획을 세우고 있다. 또한, 솔리드 파워는 미국 에너지부의 "전기 자동차를 위한 미국 저탄소 생활 (EVs4ALL)" 프로그램에서 총 4200만 달러 중 560만 달러의 지원을 받아 연구 및 개발 활동을 지속적으로 진행하고 있다. 10. 실라 나노 테크놀로지스(Sila Nanotechnologies) 실라 나노 테크놀로지스는 BMW, 다임러 AG(Daimler AG), 지멘스(Siemens), CATL과 같은 세계적인 기업들과 전략적 파트너십을 체결해 전기 자동차용 고체 상태 배터리의 상용화를 위한 강력한 투자 지원을 확보했다. 산업 내 주요 플레이어들의 지원 아래, 이 회사는 2028년까지 150 GWh 이상의 대규모 배터리 셀 생산을 목표로 하는 로드맵을 구축하고 있다. 특히, 실라 나노는 20% 더 긴 주행 거리와 20분만에 10-80%까지 충전이 가능한 타이탄 실리콘(Titan Silicon) 배터리 셀을 선보였다. 이 기술은 메르세데스-벤츠의 EQG 모델에 적용될 예정이다. 더욱이, 회사는 기존 고체 상태 배터리 기술의 덴드라이트 현상과 부피가 큰 세라믹 전해질의 한계를 극복하기 위한 방안으로, 중간 온도에서 다공성 분리막-양극 스택에 고체 전해질을 용융 침투시키는 방식을 도입할 계획이다.
-
- IT/바이오
-
전기차 시장, '전고체 배터리'가 뜬다…10대 리드 기업 어디?
-
-
폐배터리 '블랙매스'에서 희토류 재탄생
- 전세계적으로 내연 자동차의 전동화 추세가 가속화되면서 폐배터리 폐기물 처리 문제가 점점 부각되고 있다. 특히 리튬, 코발트, 니켈 등의 중요한 자원이 한정적이라는 점에서 이러한 자원에 대한 과도한 의존이 환경적, 경제적 위험요소로 지적되어 왔다. 그러나 최근 업계는 이 문제의 해결책으로 배터리 재활용 기술에 주목하고 있다. 특히 배터리 폐기 과정에서 발생하는 '블랙매스(Black Mass)'라는 검은색 덩어리에서 희망의 신호가 보이고 있다. 프랑스의 주요 일간지 프레시트론(presse-citron)에 따르면, '블랙매스(Black Mass)'는 말 그대로 짙은 검정색의 분말 덩어리인데, 배터리 제조과정에서 발생하는 폐기물인 스카프(Scarp, 배터리 제조 공장에서 발생하는 불량품)와 폐배터리를 수거해 분쇄한 가루를 지칭한다. 이때 폐배터리를 기술적으로 안전하게 파쇄해야 하며, 이 과정에서 니켈, 코발트, 리튬, 망간 등 가치 있는 희토류 원소들을 고순도로 추출해 내는 기술이 매우 중요하다. 이러한 기술을 활용하면 희소 금속에 대한 의존성을 대폭 감소시킬 수 있을 것으로 보인다. 외신 보도에 따르면, 2030년까지 리튬은 15%, 니켈은 11%, 코발트는 44%의 재활용 소재 비중으로 증가할 것으로 예상된다. 유럽연합(EU)은 2023년까지 재활용 배터리 비율을 최대 73%까지 높이는 내용의 새로운 법안을 채택했다. 다만, EU에서는 국가별로 재료 분류가 달라 블랙매스의 대규모 생산 절차가 좀 복잡하다. '유해 폐기물'이라는 라벨이 부착되면 경제협력개발기구(OECD) 회원국만 수출할 수 있기 때문이다. 또 철, 리튬, 인산염 등을 기반으로 하는 새로운 유형의 배터리 출현도 걸림돌이다. 배터리 찌꺼기에 불과했던 블랙매스는 전기차 확산과 자원의 한계라는 측면에서 볼 때 상당한 이점을 가지고 있다. 이 분야에서 선두에 있는 한국 기업 SK에코플랜트는 경주에 첫 배터리 리사이클링 공장을 구축한 것으로 알려져 미래의 친환경 에너지 솔루션으로서의 가능성을 제시하고 있다. SK에코플랜트는 2026년까지 매년 1만 톤의 블랙매스를 처리할 계획이다. 이는 한국에서 처음으로 건설된 이차전지 재활용 공장이다. 이 회사는 자체 개발한 용매추출 공정을 활용하여 후처리 공정의 경쟁력을 강화하겠다는 전략이다. 또한, 유럽, 미국, 아시아와 같은 배터리 산업의 중심지와 전기차가 널리 보급된 지역에 거점을 마련했다. 박경일 SK에코플랜트 사장은 "전기차 확산 본격화와 한정적인 자원 속에서 이차전지 리사이클링 사업은 선택이 아닌 필수"라며, "글로벌 폐배터리 수거망을 확보한 SK에코플랜트는 이번 경주 리사이클링 사업 추진으로 국내는 물론 글로벌 배터리 리사이클링 시장을 선점해 나갈 것"이라고 밝혔다.
-
- IT/바이오
-
폐배터리 '블랙매스'에서 희토류 재탄생
-
-
美, 핵무기 비축량 테스트 위해 새 슈퍼컴 설치
- 미국 로스알라모스 국립 연구소(LANL)가 '크로스로드(Crossroads)'라는 새로운 슈퍼컴퓨터를 설치 중임이 밝혀졌다. 이 슈퍼컴퓨터는 핵무기 재고 검사 시뮬레이션을 위한 것으로, 미국 과학 기술 전문매체 '인터레스팅 엔지니어링'에 소개되었다. 핵무기 재고 검사는 핵무기를 보유하고 있는 국가들이 핵무기의 수량과 형태를 확인하고 관리하기 위해 수행하는 프로세스이다. 슈퍼컴퓨터는 과학 연구, 기상 예측, 의료 연구, 우주 탐사, 그래픽 렌더링 등 다양한 고성능 컴퓨팅 작업에 활용되며, 특히 핵무기 시뮬레이션에 사용될 경우 핵무기의 수량과 형태를 실제로 테스트하지 않고도 확인할 수 있다. 크로스로드는 고급 기술 시스템(ATS)의 세 번째 버전으로, 첫 번째 '트리니티(ATS-1)'는 LANL에, 두 번째 '시에라(ATS-2)'는 로렌스 리버모어 국립 연구소(LLNL)에 설치됐다. 트리니티 시스템은 41.46 페타플롭스의 연산 능력을 갖추고 있으며, 2015년에 설치됐다. 크로스로드 시스템은 휴렛 팩커드(Hewlett Packard)에서 공급되었으며, 올해 6월 설치 작업이 시작됐다. 슈퍼컴퓨터의 연산능력은 주로 페타플롭스(PetaFLOPS·PF)로 측정되며, 1페타플롭스는 초당 1000조 번의 연산을 의미한다. 최근에는 미국과 중국 같은 슈퍼컴퓨터 선도국에서 초당 100경 번의 연산을 수행할 수 있는 슈퍼컴퓨터가 소개되었다. 이렇게 큰 연산능력은 페타플롭스의 1000배인 1엑사플롭스로 표현된다. 우리나라의 한국과학기술정보연구원(KISTI)도 슈퍼컴퓨터 개발에 열을 올리고 있으며, 내년에는 600페타플롭스 성능의 슈퍼컴퓨터 6호기를 가동 예정이다. 이 성능은 올해 5월 기준 세계 2위에 해당한다. 다만 LANL의 새로운 슈퍼컴퓨터는 연산능력에만 중점을 둔 것이 아니다. 시스템의 그래픽 처리 장치(GPU) 대신 메모리 크기와 접근에 중점을 두어, 시뮬레이션 중 발생할 수 있는 다양한 문제를 효과적으로 해결할 수 있다. 초기 테스트 결과에 따르면 크로스로드는 기존의 트리니티 시스템보다 4배에서 8배 이상의 효율성을 보일 것으로 예상된다. 이는 고대역폭 메모리(HBM)의 적용 덕분으로, HBM은 데이터 처리 속도를 크게 향상시키는 고속 메모리 기술이다. 이처럼 슈퍼컴퓨터의 성능 향상은 과학 및 연구 분야의 혁신을 주도하는 핵심 요소로 여겨지며, 국가의 연구 능력을 상징하는 중요한 지표로도 간주된다. 미국뿐만 아니라 우리나라를 포함한 전 세계 여러 국가들이 이러한 슈퍼컴퓨터 기술의 발전과 성능 경쟁에 힘을 기울이고 있다.
-
- IT/바이오
-
美, 핵무기 비축량 테스트 위해 새 슈퍼컴 설치
-
-
손등에 전자 칩 이식…카드·차 키 필요 없는 세상온다?
- 우리 몸에 이식된 칩을 통해 문을 열거나 자동차의 시동을 걸고 결제까지 할 수 있는 시대가 성큼 다가오고 있다. 공상과학소설이나 같은 장르의 영화(SF)에서나 볼 법한 일이 현실에서 일어나고 있다. 프랑스 과학기술 매체 '프랑스인포(Franceinfo)'에 따르면, 여러 기업들이 피부 안에 이식할 수 있는 전자 칩을 개발 중이다. 이 전자칩은 매우 정교한 보안 프로토콜까지 관리할 수 있다는 게 전문가들의 분석이다. 피부 이식 칩이 상용화되면 주머니 속의 지갑이나 열쇠 없이도 생활이 가능해진다. 더욱 발전된 암호화 기술로 은행카드, 차 키, 생체인식 여권, 건강보험 카드까지 모두 대체할 수 있게 되는 것이다. 맨몸만으로도 여러 기능을 실행할 수 있는 시대가 열리고 있다. 생체 칩 전문 기업인 '비보키(Vivokey)'와 '월릿모어(Walletmor)'는 손바닥 피부 아래에 칩을 이식하는 서비스를 제공하고 있다. 실제로 2022년, 브랜든 댈러리(Brandon Dalaly)라는 청년은 자신의 오른손에 무선 통신이 가능한 칩 2개를 이식받았다. 그는 '비보키'의 마이크로칩 베타 테스터로 활동한 100명 중 한 명이었다. 이 칩에는 암호화폐 데이터부터 집 열쇠, 의료보험 카드 정보, 그리고 테슬라 모델3의 스마트 기능까지 모두 저장되어 있다. 생체 이식 칩을 이용하면 키의 분실이나 도난 문제에서 벗어날 수 있다. 물론 부정적인 시나리오를 상상할 수는 있지만, 우리는 이미 얼굴이나 지문으로 휴대전화의 잠금을 쉽게 해제하고 있으며, 누군가의 정보를 훔쳐보려는 극단적인 시도를 걱정할 필요도 없다. 왜냐하면 이런 칩은 외부에 드러나지 않으며, 따로 소지할 필요도 없기 때문이다. 이 작은 장치는 좁쌀만큼의 크기를 가지면서도 신뢰성 있고 안전하게 설계됐다. 사실, 몇 년 전부터 개들의 식별용으로 이미 활용되고 있었다. 그러나 모든 사람이 이 칩을 이식받을 준비가 되어 있는 것은 아니다. 첨단 기술이 사람의 몸에 적용될 때 항상 그 기술의 안전성, 장기적인 영향 등을 고려해야 하며, 기술이 실제로 도입되기 전에는 이런 부작용에 대한 연구와 테스트가 필요하다는 게 전문가들의 지적이다. 기술은 편리할 뿐만 아니라 사회적, 문화적으로수용되어야 하는 것을 보여준다. 불과 몇 년 전 만 해도 휴대전화로 결제하는 것이 불가능하게 여겼던 것처럼 조만간 손바닥을 통해 결제하는 날이 올 수도 있다.
-
- IT/바이오
-
손등에 전자 칩 이식…카드·차 키 필요 없는 세상온다?
-
-
로봇공학, 맞춤형 학습 제공으로 교육 환경 혁신
- 교육과 로봇공학은 서로 긴밀하게 연관되어 있다. 로봇공학은 교육 방법론에 로봇 기술을 결합해 교육 환경을 혁신하고 학습 효과를 높이는 데 활용된다. 과학 전문 매체 애널리틱스 인사이트(Analytisc Insight)는 2023년에 로봇공학의 발전 덕분에 학생들이 최첨단의 교육 경험을 누릴 수 있게 되어 교육 분야에 새로운 시대가 열렸다고 최근 보도했다. 이 매체는 올해 교육 분야에서 로봇공학이 교육과 창의력을 높이는 10가지 방법을 제시했다. 1. 맞춤형 학습 로봇공학이 교육 분야에서 주목받는 기여 중 하나는 바로 맞춤형 학습이다. 맞춤형 학습은 각 학생의 학습 능력과 목표를 고려해 개별적인 학습 계획을 세우고, 교육 자료를 최적화한다. 디지털 기술을 통해 학습 환경을 맞춤 설정하고, 학습 과정을 지속적으로 추적하여 개선해 나간다. 학생마다 다른 피드백을 제공하여 학습의 방향성을 미세 조정한다. 인공지능을 탑재한 로봇은 학생의 개별적인 필요에 맞춰 교육을 제공한다. 이로 인해 모든 학생이 동등한 교육 기회를 가지며, 이해도와 기억력을 향상시킬 수 있다. 2. STEM 교육의 활성화 STEM 교육은 과학(Science), 기술(Technology), 공학(Engineering), 수학 (Mathematics) 분야의 통합 교육을 말한다. 이 교육은 학생들의 과학적, 기술적 능력 개발과 함께 문제 해결 능력을 향상시킨다. 로봇은 학생들에게 이론을 실제로 적용하는 실습 기회를 제공한다. 이러한 접근 방식은 STEM 분야에 대한 학생들의 관심을 높여, 미래의 직업 준비에 더욱 도움을 준다. 3. 코딩과 프로그래밍 스킬 현대의 디지털 시대에서 코딩과 프로그래밍 능력은 더욱 중요해지고 있다. 레고 그룹에서 만든 '마인드스톰(LEGO Mindstorms)'은 로봇 제작 및 프로그래밍을 통해 다양한 작업을 수행하게 한다. 또 교육용 로봇 플랫폼으로 설계된 '라즈베리파이(Raspberry Pi)'는 학생들의 코딩 교육에 인기 있는 도구로 자리 잡았다. 이런 도구들은 프로그래밍의 진입 장벽을 낮춰 다양한 연령대의 학습자들이 쉽게 접근할 수 있게 만든다. 4. 비판적 사고력 강화 로봇은 실제 세계의 시나리오를 통해 학생들의 비판적 사고력을 강화한다. 이를 통해 학생들은 문제를 깊게 분석하며, 혁신적인 해결책을 찾아내고 변화하는 상황에 적응하는 능력을 키운다. 이 경험은 교실을 넘어서서도 유용하게 활용될 수 있는 문제 해결 능력을 학생들에게 배움의 기회로 제공한다. 5. 접근성과 포용성 강화 로봇 기술은 장애를 가진 학생들까지 포함하여 더 포괄적인 교육 환경을 제공한다. 특수 교육이 필요한 학생들에게 로봇은 맞춤 지원을 통해 그들이 본인의 속도와 방식에 맞게 학습하도록 돕는다. 이렇게 포용성을 강화함으로써 모든 학생에게 평등한 교육의 기회를 제공하는 중요한 단계를 밟게 된다. 6. 가상 학습 동반자 디지털 교육의 확산에 따라, 로봇 기반의 가상 학습 동반자는 중요한 역할을 시작하게 되었다. 학생들이 느낄 수 있는 외로움이나 고독감을 해소하는 데 도움을 주며, 학습을 상호작용적으로 만들어 학생의 동기를 부여하고 온라인 교실 참여를 높인다. 7. 교사 보조 로봇은 교사를 대체하는 것이 아닌, 그들의 업무를 지원하고 보완하는 역할을 한다. 숙제 채점, 교실 자원 관리, 학생 관리 등의 업무를 로봇이 수행하게 되면 교사는 학생들의 교육과 멘토링에 더욱 집중할 수 있다. 8. 문화와 언어 교육 로봇은 문화와 언어 교육에서 몰입도 높은, 상호작용적인 경험을 제공한다. 언어 교육 로봇은 학생들이 의미 있는 대화를 나누게 하여 언어 능력을 향상시키는 동시에 다른 문화에 대한 이해를 깊게 한다. 이 로봇들은 현실 세계 상호 작용을 시뮬레이션 하여 언어의 장벽을 줄이고 다양한 문화에 대한 이해를 높이게 함으로써, 학생들이 글로벌한 사회에서 더 잘 연결될 수 있게 도와준다. 9. 팀워크와 협력 강화 현대의 직장에서는 팀으로의 협업 능력이 중요한 역량 중 하나이다. 로봇은 학생들에게 프로젝트를 통한 협업의 중요성을 실감하게 해주며, 이를 통해 의사소통 및 협업 능력을 향상시키도록 도와준다. 이는 현대 사회에서 성공하기 위한 필수 기술을 갖추는 데에 기여한다. 10. 미래 직업을 위한 준비 교육 분야의 로봇공학은 학생들에게 최신 기술의 트렌드를 직접 경험하게 해 줌으로써 미래의 직업에 대비할 수 있게 한다. 로봇 관련 공모전이나 프로젝트 중심의 학습을 통해, 학생들은 기술 중심의 직업 시장에서 요구되는 핵심 능력과 경험을 얻게 된다. 이와 같이 로봇공학은 현재 교육 분야의 변화를 주도하고 있다. 맞춤형 학습에서부터 미래 직업 준비에 이르기까지, 로봇은 학생들의 학습 방식과 그들이 세상과 어떻게 상호작용하는지를 새롭게 정립하고 있다. 기술의 발전에 힘입어, 로봇공학은 교육 분야에서의 중요성을 지속적으로 확대하며 학습자들에게 밝고 혁신적인 미래의 가능성을 제시하고 있다. 이런 변화를 적극적으로 받아들이는 교육자와 기관들은 끊임없이 발전하는 세상에서 학생들이 성공적으로 나아갈 수 있도록 지원할 수 있다.
-
- IT/바이오
-
로봇공학, 맞춤형 학습 제공으로 교육 환경 혁신