검색
-
-
[신소재 신기술(141)] 칼텍, 인체 내 특정 부위에 치료 약물 전달하는 구형 마이크로 로봇 개발
- 미국 캘리포니아 공과대학교(칼텍·Caltech) 과학자들이 생체적합형 미세 하이브리드 마이크로 로봇을 개발해, 치료용 약물을 원하는 신체 부위에 주입하는 데 성공했다. 미래에는 치료용 약물을 체내 필요한 곳에 정확히 전달하는 것이 소형 로봇의 과제가 될 것이다. 금속 휴머노이드 로봇이나 생체를 모방한 로봇이 아니라 눈에 보이지 않을 정도로 작은 거품과 같은 구체가 될 것이다. 체내 실핏줄을 따라 이동해야 할 것이기 때문이다. 이러한 로봇의 개발은 까다롭다. 위산과 같은 체액으로부터 생존해야 하고 외부에서 제어가 가능해야 한다. 그래야 정확하게 목표 부위로 향할 수 있다. 또 목표에 도달했을 때만 치료제를 방출해야 하며, 그 후에는 인체에 해를 끼치지 않고 신체 내에서 흡수되어야 한다. 이런 모든 요건을 충족하는 마이크로 로봇이 칼텍(Caltech) 연구팀에 의해 개발되었다고 칼텍이 공식 홈페이지를 통해 밝혔다. 연구팀은 로봇을 사용해 쥐의 방광에 발생한 종양의 크기를 줄이는 치료제를 성공적으로 전달했다. 관련 논문은 사이언스 로보틱스(Science Robotics) 저널에 게재됐다. 연구팀이 개발한 로봇은 '생체흡수성 음향 마이크로 로봇(BAM)'이라고 명명됐다. 연구팀의 레이 가오 박사는 "약물을 신체에 주입하면 신체 모든 곳으로 확산된다. 우리가 개발한 마이크로 로봇은 종양 등 치료 대상 부위로 직접 안내해 통제되고 효율적인 방식으로 약물을 방출할 수 있다"고 말했다. 마이크로 또는 나노 로봇 개념은 새로운 것은 아니다. 전문가들은 지난 20년 동안 마이크로 로봇을 개발해 왔다. 그러나 혈액, 소변 또는 타액과 같은 복합적인 생체 유체에서 로봇을 정밀하게 움직이는 것은 매우 어렵기 때문에 생물 대상 적용은 제한적이었다. 특히 생체적합성 및 생체흡수성으로 신체에 독성 물질을 남기지 않아야 하는데, 이 역시 난제였다. 칼텍에서 개발한 마이크로 로봇은 폴리에틸렌 글리콜 디아크릴레이트라는 하이드로겔로 만들어진 미세한 구체다. 하이드로겔은 액체 또는 수지 형태로 시작해 내부에 있는 폴리머 네트워크가 굳어지면 고체가 되는 재료이다. 이러한 특성으로 하이드로겔은 다량의 액체를 유지할 수 있고, 많은 하이드로겔이 생체적합성을 갖는다. 또한 적층 제조 방법을 통해 구체의 외부에 치료용 약물을 탑재, 신체 내 목표 부위로 운반할 수 있다. 하이드로겔 레시피를 만들기 위해 연구팀의 일원이었던 줄리아 그리어는 '2광자 중합(TPP) 리소그래피'라는 기술을 활용, 3D 프린팅을 연상시키는 방식으로 복잡한 형태의 구조를 층층이 쌓아 올려 완성했다. 이 기술은 적외선 레이저 펄스를 사용해 특정 패턴에 따라 매우 정밀한 방식으로 감광성 폴리머를 가교시키는 기술이다. 그리어 팀은 직경 30마이크론의 미세 구조를 인쇄하는 데 성공했다. 이는 사람의 머리카락 직경과 비슷하다. 최종적으로 마이크로 로봇은 구체의 바깥쪽 내부에 자성 나노 입자와 치료 약물을 넣었다. 자성 나노 입자는 외부에서의 통제를 위한 것으로, 외부 자기장을 사용해 로봇을 원하는 위치로 안내할 수 있게 한다. 로봇이 목표 부위에 도달하면 그 자리에 머무르고 약물을 주입하게 된다. 연구팀은 마이크로 로봇의 외부를 친수성으로 설계해 구형 로봇이 신체를 통과할 때 뭉치지 않도록 했다. 그러나 마이크로 로봇의 내부는 기포를 가두어야 하기 때문에 친수성이어서는 안 된다. 그렇지 않으면 기포는 쉽게 붕괴되거나 용해된다. 가두어진 기포는 로봇을 이동시키고 실시간 이미징으로 추적하기 위해 중요하다. 외부는 친수성이고 내부는 소수성, 즉 물에 대한 저항성을 모두 갖춘 하이브리드 마이크로 로봇을 만들기 위해 연구팀은 2단계 화학적 변형을 고안했다. 먼저, 하이드로겔에 긴 사슬 탄소 분자를 부착해 전체 구조를 소수성으로 만들었다. 그런 다음 산소 플라즈마 에칭 기술을 사용해 외부의 긴 사슬 탄소 구조 일부를 제거함으로써 외부는 친수성으로, 내부는 소수성으로 남겼다. 이것이 이번 연구 프로젝트의 핵심 혁신이었다. 가오는 "내부는 소수성이고 외부는 친수성인 비대칭 표면 변형을 통해 소변이나 혈청과 같은 생체 유체에 장시간 기포를 가둘 수 있게 됐다“고 설명했다. 구형 마이크로 로봇 안에 있는 기포는 초음파 영상 대조제 역할을 한다. 기포를 통해 생체 내에서 움직이는 로봇을 실시간으로 모니터링할 수 있다. 연구팀은 마이크로 로봇이 목표 지점으로 이동하는 것을 추적하는 방법도 개발했다. 연구의 마지막 단계는 방광 부위에 종양이 있는 쥐에 대한 테스트였다. 연구팀은 21일 동안 마이크로 로봇을 통해 네 차례 치료제를 전달했다. 그 결과 로봇이 전달하지 않은 치료제보다 종양을 줄이는 데 더 효과적이라는 사실이 규명됐다. 연구팀은 이번 개발 결과는 환자에 대한 약물 전달 및 정밀 수술을 위한 매우 유망한 플랫폼이 될 것이라고 자평하고 사람에 대한 임상 실험을 거쳐 상용화가 필요하다고 주장했다.
-
- IT/바이오
-
[신소재 신기술(141)] 칼텍, 인체 내 특정 부위에 치료 약물 전달하는 구형 마이크로 로봇 개발
-
-
[퓨처 Eyes(60)] 우주에서 자란 줄기세포, 노화와 질병 치료에 새 길 열다
- 우주는 더 이상 단순한 탐험의 공간이 아니다. 국제우주정거장(ISS)과 민간 우주 임무에서 진행된 줄기세포 실험에서 의료 과학의 판도를 바꿀 혁신적인 결과가 나왔다. ISS의 미세중력 환경에서 배양된 줄기세포가 지구에서는 실현할 수 없었던 뛰어난 능력을 발휘한 것이다. 미국 플로리다 메이요 클리닉과 세다스-사이나이 연구진은 이번 실험 결과가 질병 치료와 재생의학 연구에 새로운 지평을 열 것이라고 최근 발표했다. 우주에서는 줄기세포가 스스로 3차원 구형 배열을 형성했다는 점이 연구진에게 가장 큰 놀라움을 안겨 주었다. 지구의 중력 때문에 평면 배양 접시 위에서만 자라던 줄기세포가 우주의 미세중력 아래에서는 스스로 진화하듯 3차원 조직 구조를 만들어 낸 것이다. 이는 인체 조직에 가까운 구조로, 면역 조절과 염증 완화 능력을 크게 향상시켰다. 플로리다 메이요 클리닉의 아바 주바이르 박사는 "우리는 세포가 3차원으로 자라리라고는 기대하지 않았다. 그러나 미세중력 환경은 세포가 자연스럽게 구형 배열을 형성하도록 했다. 이는 지구에서는 불가능했던 현상"이라고 설명했다. 이처럼 우주의 미세중력은 줄기세포의 자가 조립 능력을 활성화하며, 새로운 의료 혁신의 가능성을 열어주었다. 이번 연구는 NPJ 마이크로그래비티(NPJ Microgravity)에 게재됐으며, 우주 환경을 활용한 줄기세포 연구가 새로운 의료 혁신을 가져올 것으로 기대된다. [미니해설] 우주 실험이 밝혀낸 줄기세포의 비밀⋯불로장생의 꿈 '성큼' 줄기세포는 손상된 조직을 복원하거나 질병 치료에 사용될 수 있는 '만능 세포'로, 재생의학의 핵심이다. 일본의 야마나카 신야(山中 伸弥) 박사가 2012년 노벨 생리학·의학상을 수상한 연구를 통해, 일반 세포를 줄기세포로 변환하는 기술이 세상에 알려졌다. 그는 Sox와 POU 유전자를 포함한 4가지 인자를 활용해 줄기세포를 유도했다. 줄기세포는 그 자체로 현대 의학의 혁신적인 가능성을 품고 있다. 복제와 분화 능력은 조직 재생과 질병 치료의 핵심 자원으로 평가받는다. 그러나 기존 기술은 여전히 복잡한 한계를 지니고 있다. 이런 상황에서 우주에서 진행된 줄기세포 배양 실험은 재샌의학 분야에 새로운 방향을 제시하며 주목받고 있다. 미세중력, 줄기세포 배양의 최적 환경 미세중력은 중력이 거의 없는 상태를 말한다. '무중력' 이라고도 불리지만, 중력이 완전히 없는 것은 아니고 지구 표면 중력의 100만분의 1 정도로 매우 작은 중력만 존재하는 환경이다. 지구 궤도를 도는 우주정거장에서는 지구 중력의 영향을 거의 받지 안항 미세중력 환경이 조성된다. 우주 환경에서 줄기세포를 배양하는 일은 간단하지 않았다. 미세중력 상태에서는 액체가 접시 밖으로 흘러나갈 위험이 있었기 때문이다. 하지만 연구진은 96웰 플레이트의 액체 표면 장력을 활용해 세포를 고정하는 기술을 개발하여, 성공적으로 배양 과정을 진행할 수 있었다. 아룬 샤르마 세다스-사이나이 연구소 박사는 "표면 장력을 활용한 이번 기술은 실험 성공의 핵심이었다. 맞춤형 장비 없이도 우주 실험을 가능하게 한 중요한 성과였다"라고 말했다. 우주에서의 새로운 가능성: 노화 관련 질환 치료 미세중력 환경은 줄기세포가 더 자연스러운 성장 상태를 유지하며, 면역 조절 능력과 염증 완화 효과를 향상시키는 데 기여했다. 이는 단순한 발견을 넘어, 줄기세포의 응용 가능성을 확장하는 중요한 과학적 단서를 제공한다. 연구진은 미세중력 환경에서 줄기세포를 대량으로 제조할 방법을 모색 중이다. 이는 줄기세포 기술의 상업적 생산과 재생의학 응용을 위한 중요한 전환점이 될 것으로 기대된다. 이번 연구는 노화 관련 질환의 치료에 새로운 전환점을 마련했다. 줄기세포는 뇌졸중, 암, 치매와 같은 질환 치료에서 중요한 역할을 할 가능성을 보여주었다. 또한, 우주 환경에서 배양된 줄기세포는 지구로 돌아온 뒤에도 복제 안정성과 확장 능력을 유지하며 의료 응용 가능성을 높였다. 클라이브 스벤슨 세다스-사이나이 연구소 교수는 "우리가 수행한 연구는 시작에 불과하다. 우주에서 제조된 줄기세포는 재생의학을 혁신할 독특한 특성을 갖고 있다"고 말했다. 우주 시대의 의료 혁명: '불로장생'의 가능성 이번 연구 결과는 단순한 과학적 발견을 넘어, 재생의학의 새로운 장을 열었다. 우주라는 실험실은 줄기세포 기술의 대량 생산과 상업적 생산 가능성을 제시하며, 인류의 오랜 꿈인 '불로장생'을 현실로 만들 가능성을 보여준다. 우주에서 시작된 줄기세포 연구는 더 이상 공상과학의 영역이 아니다. 미세중력이라는 우주의 독특한 환경은 질병 치료와 장기 이식 기술에 혁신적인 변화를 가져올 것이다. 미래의 어느 날, 우리는 줄기세포 기술 덕분에 질병의 고통에서 벗어나 건강하게 오래 사는 꿈을 이룰지도 모른다. 그리고 그 꿈을 현실로 만들 열쇠는 바로 우주에서 진화한 작은 세포들이 쥐고 있을 것이다.
-
- 포커스온
-
[퓨처 Eyes(60)] 우주에서 자란 줄기세포, 노화와 질병 치료에 새 길 열다
-
-
[우주의 속삭임(82)] 나사 큐리오시티 로버, 화성의 신비한 거미줄 바위 발견
- 나사(NASA)의 화성 탐사선 큐리오시티(Curiosity) 로버가 화성에서 거미줄과 같은 패턴의 바위 지대를 발견했다. 게디즈 발리스(Gediz Vallis) 수로의 물 활동을 조사하던 큐리오시티 로버의 다음 임무는 '상자형 구조물'이라고 알려진 이 바위 지대에 대한 탐사가 될 것으로 보인다고 사이테크데일리가 전했다. 복잡한 거미줄 패턴으로 구성된 이 암석은 행성 표면을 따라 수 마일에 걸쳐 펼쳐져 있다. 이 지역을 연구하기 위해 큐리오시티는 지난 9월 말, 해협 내의 유황석 등 다양한 특징을 보여주는 360도 파노라마를 촬영했다. 큐리오시티의 임무는 고대 화성에 미생물 생명체가 존재했다면, 이를 위해 필요했을 조건의 증거를 찾는 것이다. 수십억 년 전, 화성에는 호수와 강이 있었고, 높이 5000m의 샤프산 기슭에 위치한 게디즈 밸리스 해협은 중요한 정보를 제공할 수 있다. 이 해협은 화성이 물을 잃어갈 당시의 환경이 어땠는지 보여줄 수 있다. 샤프산의 오래된 지층은 건조한 기후에서 형성되었지만, 수로의 존재는 기후가 크게 변화하면서 때때로 물이 이 지역을 통해 흘렀음을 시사한다. 지난 2012년 착륙 이후 약 33km를 이동한 큐리오시티는 현재 게디즈 발리스 해협의 서쪽 가장자리를 따라 이동하고 있다. 그 과정에서 여러 장의 파노라마를 수집했으며, 거미줄 모양의 바위도 발견됐다. 나사의 화성 정찰 궤도선(MRO)으로 보면 이 상자 모양은 표면을 가로질러 뻗어 있는 거미줄처럼 보인다. 샤프산의 마지막 물줄기에 의해 운반된 광물이 표면 암석의 균열로 가라앉은 후 굳어지면서 형성된 것으로 여겨진다. 암석 일부가 침식돼 떨어져 나가면서, 갈라진 틈에 굳어진 광물들과 거미줄 같은 상자 모양의 구조물만 남았다. 지구에서도 상자 모양의 구조물은 절벽과 동굴에서 목격됐다. 그러나 샤프산의 상자 모양의 구조물은 화성에서 물이 사라지면서 형성되었고, 10~20km에 달하는 지역에 걸쳐 있다는 점에서 지구의 그것과는 다르다. 큐리오시티 로버를 통해 화성을 연구하는 라이스 대학교의 커스틴 지바흐 박사는 "능선 지대의 거미줄 모양 암석에는 지하에서 결정화된 광물이 포함되어 있을 것이다. 그곳은 더 따뜻했을 것이고, 짠 액체 상태의 물이 흘렀을 수 있다"고 말했다. 또 "초기 지구 미생물들도 비슷한 환경에서 생존할 수 있었을 것이다. 그래서 화성의 탐사는 흥미롭다"고 강조했다. 한편 연구진은 360도 파노라마에서 보이는 '피나클 릿지' 잔해 더미를 포함해 수로 내에서 다양한 특징을 형성한 타임라인을 구성하고 있다. 강, 젖은 토석류, 마른 눈사태 등이 모두 흔적을 남겼다. 또한 넓게 퍼져 있는 유황석 지대에 대한 몇 가지 질문에 대한 답도 찾고 있다. MRO가 촬영한 이 지역의 이미지는 밝은색의 눈에 띄지 않는 패치처럼 보였다. 유황석은 MRO의 고해상도 이미징 장비로도 볼 수 없을 정도로 작았는데, 큐리오시티 로버가 부순 돌 내부에서 노란색 결정의 유황석이 드러났다. 그리고 로버의 장비는 돌이 순수한 유황임을 확인했다. 이는 화성에서 과거 어떤 임무에서도 본 적이 없는 것이었다. 유황이 형성된 이유는 밝혀지지 않았다. 지구에서는 화산과 온천 활동으로 생겨나지만, 샤프산에서는 그 증거가 없다. 이는 앞으로 해결되어야 할 숙제다.
-
- IT/바이오
-
[우주의 속삭임(82)] 나사 큐리오시티 로버, 화성의 신비한 거미줄 바위 발견
-
-
[신소재 신기술(137)] 혈액으로 만든 맞춤형 3D 프린팅 임플란트, 재생 의료의 새 지평 열까
- 영국에서 자신의 혈액을 사용해서 재생 치유 능력을 60% 이상 높인 3D 프린팅 임플란트가 개발됐다. 우리 몸의 면역 체계는 재생 혈종(RH)을 조절하여 작은 파열이나 골절을 효과적으로 치료하는 능력을 가지고 있다. RH는 다양한 분자 및 세포 과정을 조율하는 복잡하고 역동적인 환경으로 완전한 조직 복구를 보장한다. 최근 영국 노팅엄 대학교 약학 및 화학 공학 연구팀은 이러한 자연 치유 과정을 활용하여 개인 맞춤형 재생 소재를 만드는 '생체협력적' 접근법을 제시했다. 혈액을 기반으로 하는 이 기술은 부상 및 질병 치료에 효과적인 맞춤형 재생 혈액 제품 개발로 이어질 수 있다. 해당 논문에 대해서는 테크 익스플로리스트와 뉴아틀라스 등 다수 외신이 보도했다. 연구팀은 자연 조직 치유에 관여하는 필수 과정을 유도하는 펩타이드 분자 조직을 사용해 조직 재생을 촉진하는 생체 소재를 개발했다. 대부분의 신체 조직은 복잡한 치유 과정을 통해 작은 파열이나 골절을 효율적으로 재생시킬 수 있다. 초기 단계에서는 액체 혈액이 고체 RH를 형성하는 데, 이는 재생에 필수적인 세포, 거대 분자와 요소를 포함하는 살아 있는 미세 환경이라 할 수 있다. 팀은 합성 펩타이드와 환자의 혈액을 결합하는 자가 조립 기술을 개발해 자연 치유 과정의 핵심 분자, 세포 및 메커니즘을 포착하는 소재를 만들었다. 이를 통해 RH를 모방하고 구조적 및 기능적 특성을 향상시키는 재생 소재를 제작할 수 있었다. 이러한 소재는 정상적인 혈소판 행동, 성장 인자 생성, 치유에 필수적인 세포 모집 등 RH의 자연적 기능을 유지하면서 쉽게 조립하고 조작 및 3D 프린팅이 가능하다. 연구팀은 이 방법을 사용해 동물 모델에서 동물 자신의 혈액을 활용하여 뼈를 성공적으로 복구하는 것을 입증했다. 팀은 두개골에서 뼈 일부를 수술로 제거한 쥐를 대상으로 실험을 진행했다. 쥐의 혈액에서 새로운 RH 구조물을 배양해 제거된 두개골 뼈 틈새에 이식한 결과, 부상 부위가 재생의 징후를 보였다. 6주 후 새로운 RH 구조물이 투입된 쥐는 새로운 뼈가 최대 62% 생성됐다. 반면, 시중에서 판매되는 뼈 대체물을 사용한 쥐는 50%가 재생됐다. 아무 것도 처리하지 않은 대조군 쥐는 뼈가 30%만 재생되는 데 그쳤다. 알바로 마타 노팅엄 대학교 생체 의학 공학 및 생체 재료 교수는 "수년 동안 과학자들은 자연 재생 환경을 재현하기 위한 합성적 접근 방식을 연구해 왔지만, 고유한 복잡성으로 인해 어려움을 겪었다"며 "이번 연구에서는 재생 환경을 재현하는 대신 생물학적 시스템과 협력하는 방식을 택했다"고 설명했다. 코시모 리고리오 공학부 박사는 "사람들의 혈액을 고도로 재생 가능한 임플란트로 쉽고 안전하게 바꿀 수 있는 가능성은 매우 흥미롭다"며 "혈액은 사실상 무료이며 환자로부터 비교적 많은 양을 쉽게 얻을 수 있다. 우리의 목표는 환자의 혈액을 풍부하고 접근 가능하며 조정 가능한 재생 임플란트로 빠르고 안전하게 변화하기 위해 임상 환경에서 쉽게 접근하고 사용할 수 있는 도구 키트를 구축하는 것이다"라고 밝혔다. 이 연구는 어드밴스트 머티리얼(Advanced Materials) 저널에 게재됐다.
-
- IT/바이오
-
[신소재 신기술(137)] 혈액으로 만든 맞춤형 3D 프린팅 임플란트, 재생 의료의 새 지평 열까
-
-
[기후의 역습(90)] NASA 위성, 세계 담수 고갈 위기 포착⋯심각한 물 부족 사태 예고
- 나사(NASA)와 독일의 그레이스(GRACE) 위성을 이용해 관측한 국제 연구팀은 지구의 담수 총량이 2014년 5월부터 급격히 감소하기 시작했으며 그 이후 계속 낮은 수준을 유지하고 있다는 증거를 발견했다고 나사가 공식 홈페이지를 통해 밝혔다. 지구물리학 서베이에 실린 보고서에서 연구진은 이러한 변화가 지구의 대륙이 지속적으로 더욱 건조한 단계에 접어들었음을 나타낼 수 있다고 지적했다. 나사 고다드 우주비행센터의 수문학자 매튜 로델은 "2015년부터 2023년까지 위성 측정 결과 육지에 저장된 담수의 평균 양(호수와 강과 같은 액체 상태의 지표수와 지하 대수층의 물 포함)이 2002년부터 2014년까지의 평균 수준보다 1200㎢ 낮았다"고 말했다. 이는 미국 5대호 중 이리호에서 잃어버린 양의 2.5배다. 가뭄이 들면 관개 농업의 확장과 함께 농장과 도시는 지하수에 더 많이 의존해야 하며, 이는 지하수 공급 감소의 악순환으로 이어질 수 있다. 담수 공급이 격감하고, 강우로 보충되지 않으며, 결국 더 많은 지하수가 소모된다. 2024년에 발표된 유엔 물 스트레스 보고서에 따르면, 이용 가능한 물의 감소는 농부와 지역 사회에 부담을 주고, 사람들이 오염된 수원으로 눈을 돌리게 된다. 그러면 기근, 갈등, 빈곤, 질병 증가로 이어질 가능성이 있다. 연구진은 독일 항공우주센터, 독일 지구과학연구센터, 나사가 운영하는 그레이스 위성의 관측을 통해 담수의 급격한 전 세계적인 감소를 확인했다. 그레이스 위성은 지구 중력의 변동을 매월 측정하여 지상 및 지하의 물 질량 변화를 보여준다. 최초의 그레이스 위성은 2002년 3월부터 2017년 10월까지 운행했다. 후속 그레이스-FO 위성은 2018년 5월 발사됐다. 연구에서 보고된 세계 담수량 감소는 브라질 북부와 중부에서 발생한 대규모 가뭄으로 시작되었고, 그 직후 호주, 남미, 북미, 유럽, 아프리카의 가뭄으로 이어졌다. 2014년 후반부터 2016년까지 열대 태평양의 해수 온도가 상승하면서 1950년 이래 가장 심각한 엘니뇨 현상이 발생했고, 대기 중 제트기류의 변화가 일어나 전 세계의 날씨와 강우 패턴이 바뀌었다. 그러나 엘니뇨가 가라앉은 후에도 세계 담수량은 회복되지 않았다. 연구진은 그레이스가 관찰한 세계에서 가장 극심한 가뭄 30건 중 13건이 2015년 1월 이후에 발생했다고 보고했다. 연구진은 지구 온난화가 지속적인 담수 고갈의 원인일 수 있다고 의심하고 있다. 지구 온난화로 인해 대기가 더 많은 수증기를 보유하게 되어 더 극심한 강수가 발생한다. 총 연간 강수량과 강설량은 크게 변하지 않을 수 있지만, 강렬한 강수 사이의 오랜 기간 동안 토양은 건조해지고 더 단단해진다. 그러면 비가 올 때 땅이 흡수할 수 있는 물의 양이 줄어든다. 전 세계적으로 담수 수위는 2014~2016년 엘니뇨 이후 지속적으로 낮게 유지되고 있으며, 더 많은 물이 수증기로 대기에 갇혀 있다. 온난화는 지표면에서 대기로의 물의 증발과 대기의 수분 보유 용량을 모두 증가시켜 가뭄의 빈도와 강도를 증가시킨다. 담수의 급격한 감소가 주로 지구 온난화 때문이라고 의심할 만한 이유가 있지만, 두 가지를 확실하게 연결하기는 쉽지 않다. 기후 예측에는 불확실성이 많으며 측정과 모델에는 항상 오류가 있기 때문이다. 지구 담수가 2015년 이전 수준으로 회복될지, 안정적으로 유지될지, 아니면 감소세를 이어갈지는 아직 알 수 없다. 현대 기온 기록상 가장 더웠던 9년이 담수의 급격한 감소와 일치했다는 점을 고려할 때, 이는 우연이 아니며 앞으로 일어날 일의 징조일 수 있다고 연구진은 말했다.
-
- IT/바이오
-
[기후의 역습(90)] NASA 위성, 세계 담수 고갈 위기 포착⋯심각한 물 부족 사태 예고
-
-
[신소재 신기술(136)] 나노파스타, 상처 드레싱의 새로운 혁명⋯초박막 기술로 치유 잠재력
- 유니버시티 칼리지 런던(ULC: University College London)의 화학자 팀이 일반 밀가루, 액체, 그리고 청색광 파장보다 좁은 372나노미터 폭에 불과한 가닥을 만들 수 있는 전기 충전 장비를 이용, 세계에서 가장 얇은 스파게티를 만들었다고 ULC가 공식 홈페이지를 통해 전했다. 만들어진 스파게티는 소위 나노파스타로서, 너무 가늘기 때문에 전자 현미경으로만 볼 수 있다고 한다. 전분으로 만들어졌지만 너무 가늘어 식재료로 사용될 수는 없고, 의학 등 다른 용도로 활용이 기대된다. 이 연구는 나노스케일 어드밴시스 저널에 발표됐다. 게시글에 따르면, ULC 화학자 팀은 나노파스타를 사용해 2cm 폭의 매트를 만들었다. 매트는 당연히 육안으로 보이지만, 매트를 구성하고 있는 개별 섬유는 보이지 않는다. 밀가루와 액체 포름산은 '전기 방사'라는 기술을 사용해 방적됐다. 생 파스타 혼합물은 전하로 바늘 끝을 통해 당겨져 머리카락보다 200배 더 얇은 스파게티를 형성했다. 연구를 주도한 애덤 클랜시 박사는 게시글에서 "스파게티는 물과 밀가루 혼합물을 금속 구멍에 밀어 넣어 만들어진다. 연구팀도 같은 방법을 사용했지만, 전하로 밀가루 혼합물을 끌어당겼다는 점이 다르다. 같은 스파게티지만 이것이 훨씬 가늘다"라고 말했다. 개발된 스파게티는 세계에서 가장 얇다. 지금까지 개발된 두 번째로 얇은 것은 너비가 400마이크론으로 이번에 개발된 것보다 약 1000배 더 굵으며, 이는 기계로 만들어지지 않았다. 수 필린데우(Su filindeu: 신의 실을 의미하거나 아랍어로 머리카락을 의미하는 단어에서 유래했을 수 있음)라는 이름의 스파게티는 사르데냐의 누오로 시에서 약 10명의 여성이 직접 만들었다. 연구팀의 개러스 윌리엄스 교수는 "개발된 스파게티는 안타깝게도 파스타(스파게티를 포함한 면요리 통칭)로는 유용하지 않다. 팬에 넣으면 1초도 채 걸리지 않아 너무 익는다"고 말했다. 그렇다면 이 얇은 스파게티 기술을 어디에 쓸 수 있을가. 연구팀이 제안하는 것은 의학 분야다. 당연히 연구팀도 새로운 파스타를 개발하려고 한 것이 니었다. 연구팀은 개발된 전분 나노실, 즉 나노파스타를 다른 기술 응용 분야에 활용할 계획이며, 그중 몇몇은 의료계에서 사용될 것을 기대하고 있다. 윌리엄스는 "전분으로 만든 나노섬유는 다공성이기 때문에 상처 드레싱에 사용할 수 있는 잠재력을 갖고 있다. 또 세포 조직을 재생하기 위한 지지대로 활용하는 연구가 활발하다"고 설명했다. 클랜시도 "전분은 풍부하고 재생 가능하기 때문에 유망한 활용 소재다. 셀룰로스에 이어 지구상에서 두 번째로 큰 바이오매스 공급원이며 생분해성이 있어 체내에서 분해될 수 있다"고 덧붙였다. 그러나 전분을 정제하려면 많은 가공이 필요하다. 이번 연구 성과는 밀가루를 사용해 나노섬유를 만드는 더 간단한 방법이 가능하다는 것을 보여주었다. 연구팀은 다음 단계로 나노파스타의 특성을 추가 조사할 계획이다. 예를 들어, 나노파스타는 얼마나 빨리 분해되는지, 세포와 어떻게 상호 작용하는지, 그리고 대량 생산이 가능한지 등을 연구할 방침이다.
-
- IT/바이오
-
[신소재 신기술(136)] 나노파스타, 상처 드레싱의 새로운 혁명⋯초박막 기술로 치유 잠재력
-
-
[신소재 신기술(134)] UC 버클리, '뜨거운 이산화탄소 가스 포집' 획기적 기술 개발
- 산업 공정에서 발생하는 뜨거운 이산화탄소를 포집할 수 있는 혁신적인 기술이 개발됐다. 시멘트나 강철을 생산하는 산업 플랜트는 강력한 온실가스인 이산화탄소를 대량으로 배출하지만, 배기가스가 너무 뜨거워 최첨단 탄소 제거 기술을 사용할 수 없다. 배기가스를 냉각하려면 많은 에너지와 물이 필요하며, 이는 일부 가장 오염이 심한 산업에서 이산화탄소 포집 기술을 도입하는 장벽으로 작용한다. 그런데 UC 버클리의 화학자 연구진이 스펀지처럼 작용해 산업 배기가스와 비슷한 높은 온도에서 이산화탄소를 포집할 수 있는 소재를 발했다. UC 버클리 공식 홈페이지에 따르면, 발견된 소재는 금속-유기 프레임워크(MOF)의 일종으로, 사이언스 저널에 게재됐다. 발전 또는 산업 플랜트 배기가스에서 탄소를 포집하는 주요 방법은 액체 아민을 사용하여 이산화탄소를 흡수하는 것이다. 그러나 이 방법은 섭씨 40~60도 사이에서만 효율적으로 작동한다. 시멘트 제조 및 제강 공장은 200도를 넘는 배기가스를 생성하고 일부 산업 배기가스는 500도에 달한다. 아민이 추가된 MOF 하위 분류를 포함해 현재 시범 운영 중인 새로운 소재는 150도 이상의 온도에서는 분해되거나 덜 효율적이다. 이렇게 뜨거운 이산화탄소를 가져와 기존의 탄소 포집 기술을 적용하려면 적절한 온도로 냉각해야 하고, 비싼 인프라가 필요하다. 이번 연구를 진행한 UC 버클리 커티스 카쉬 박사는 "우리 기술이 탄소 포집 방식을 근본적으로 바꿀 수 있을 것"이라며 "개발된 MOF가 전례 없이 높은 온도에서 이산화탄소를 포집할 수 있다는 것이 입증됐다. 과거의 다공성 소재로는 불가능했던 것"이라고 설명했다. 아민 기반 탄소 포집에 대한 일반 연구에서 벗어나 고온에서도 작동하는 MOF의 새로운 매커니즘을 수립했다는 것이다. 개발된 소재는 다공성 결정질 금속 이온 및 유기 링커 배열을 특징으로 하며, 내부 면적은 스푼당 약 6개의 축구장 크기에 달해 이산화탄소를 흡착하기에 충분히 넓은 면적이다. 연구진은 시뮬레이션에서 새로운 MOF가 평균 20%~30%의 이산화탄소 농도를 보이는 시멘트 및 철강 제조 플랜트의 배출가스와 약 4% 농도의 이산화탄소를 포함한 천연가스 발전소의 배출가스에서 뜨거운 이산화탄소를 포집할 수 있음을 보여주었다. 포집된 이산화탄소를 지하에 저장하거나 연료 또는 기타 부가가치 화학 물질을 만드는 데 사용하는 것은 온실가스를 줄이는 핵심 전략이다. 지구 온난화와 기후 변화에 대응하는 유력한 솔루션으로 각광받고 있다. 재생 에너지 발전과 달리 화석연료를 주로 사용하는 산업 플랜트는 지속 가능성을 확보하는 것이 더욱 어렵기 때문에 이산화탄소 포집이 매우 중요하다. 아민 기반 흡착제는 수십 년 동안 탄소 포집 연구의 초점이었다. MOF는 원래 독일 아우크스부르크 대학교의 연구진이 발견했다. MOF가 이산화탄소로 채워지면 이산화탄소의 분압을 낮추어 제거하거나 탈착할 수 있다. MOF는 재사용한다. 연구진은 MOF를 변형해 다른 가스를 흡착할 수 있는지 추가 확인 작업에 나서고 있다. 이 소재가 더 많은 이산화탄소를 흡착할 수 있도록 기능 개선도 진행하고 있다.
-
- 경제
-
[신소재 신기술(134)] UC 버클리, '뜨거운 이산화탄소 가스 포집' 획기적 기술 개발
-
-
[우주의 속삭임(78)] 목성에 단단한 땅이나 바위가 없는 이유는?
- 목성에는 지구에서 밟는 풀이나 흙과 같이 사람이 걷거나 우주선이 착륙할 수 있는 단단한 표면이 없다. 그 이유는 뭘까. 온갖 특이한 현상을 연구하는 물리학계에서도 '표면이 없는 세계'라는 개념은 이해하기 어렵다고 한다. 나사(NASA)의 로봇 탐사선 주노(Juno)가 이상한 행성인 목성 궤도를 9년째 공전하고 있는 지금도 목성의 많은 부분은 여전히 미스터리로 남아 있다. 태양에서 다섯 번째 행성인 목성은 화성과 토성 사이에 있다. 태양계에서 가장 큰 행성으로, 1000개 이상의 지구가 들어갈 만큼 크고 여유 공간도 있다. 태양계의 수성, 금성, 지구, 화성 등 네 개의 내행성은 모두 단단한 암석 물질로 이루어져 있지만, 목성은 태양과 유사한 구성을 가진 가스 행성이다. 소용돌이치고, 폭풍우가 몰아치며, 격렬하게 난기류를 일으키는 가스 덩어리의 거대 구체다. 목성의 일부 지역에서는 바람이 시속 약 640km 이상으로 불고 있다. 이는 지구의 5등급 허리케인보다 약 3배 빠른 속도다. 지구 대기권 꼭대기에서 시작해 약 100km 아래로 내려가면 기압이 지속적으로 증가한다. 궁극적으로는 땅이든 물이든 지구 표면에 부딪힌다. 목성의 경우, 대부분이 수소와 헬륨으로 이루어진 대기권의 꼭대기에서 내려가기 시작하면 지구와 마찬가지로 더 깊이 들어갈수록 압력이 증가한다. 목성의 압력은 엄청나다. 위의 가스층이 점점 더 아래로 밀려 내려감에 따라, 그것은 마치 바다 밑바닥에 있는 것과 같다. 지구의 물 대신 목성은 가스로 둘러싸여 있다. 압력이 너무 강해져서 인체가 붕괴될 것이다. 압력에 눌려 사망하게 되는 것이다. 1600km 아래로 내려가면 뜨겁고 밀도가 높은 가스가 이상하게 작동하기 시작한다. 가스는 액체 수소 형태로 바뀌어 물이 없는 바다를 만들어낸다. 물이 없다는 점은 다르지만, 태양계에서 가장 큰 바다라고 할 수 있다. 약 3만 2000km를 내려가면 수소는 흐르는 액체 금속에 더욱 가까워진다. 이 물질은 너무 이질적이다. 과학자들도 그 때문에 큰 어려움을 겪었으며, 최근에야 실험실에서 이 물질을 재현했다. 이 액체 금속 수소의 원자는 매우 단단히 압축돼 전자가 자유롭게 돌아다닐 수 있다. 이러한 층 전환은 갑작스러운 것이 아니라 점진적으로 이루어진다. 수소 가스에서 액체 수소로, 그리고 금속 수소로의 전환은 천천히 부드럽게 이루어진다. 어떤 지점에도 날카로운 경계나 고체 물질 또는 표면은 없다. 이렇게 내려가면 궁극적으로 목성의 핵에 도달하게 된다. 이것은 목성 내부의 중심 영역이며 표면과 혼동해서는 안 된다. 학자들은 여전히 목성 핵 물질의 정확한 성질에 대해 논쟁하고 있다. 그중에서 가장 호응을 받는 모델은 암석과 같은 고체가 아니라, 액체와 고체의 뜨겁고 밀도가 높은 금속성 혼합물과 비슷하다는 것이다. 목성 핵의 압력은 엄청나서 마치 지구 대기 1억 개가 누르는 것과 같다. 또는 신체의 각 제곱인치 위에 엠파이어 스테이트 빌딩 두 개가 얹히는 것과 같다. 압력만이 유일한 문제는 아니다. 목성의 핵에 도달하려는 우주선은 섭씨 2만 도의 극심한 열에 녹을 것이다. 이는 태양 표면보다 3배 더 뜨거운 온도다. 목성은 이상하고도 무서운 곳이다. 그러나 목성이 없었다면 인간이 존재하지 않았을 수도 있다. 그 이유는 목성이 지구를 포함한 태양계 내행성을 보호하는 방패 역할을 하기 때문이다. 목성은 엄청난 중력으로 수십억 년 동안 소행성과 혜성의 궤도를 바꾸어 놓았다. 목성의 개입이 없었다면 우주 잔해 중 일부가 지구에 충돌했을 수도 있다. 만약 하나의 충돌이 대격변 수준이었다면 지구는 멸종 수준의 사건을 일으켰을 것이다. 공룡의 대멸종을 연상하면 납득할 수 있다. 목성은 지구 생명체의 존재에 도움을 주었을지 모르지만, 목성 자체는 생명체가 살기에 매우 부적합한 곳이다. 그러나 목성의 위성인 유로파는 다르다. 태양계의 다른 곳에서 생명체를 찾을 수 있는 가장 좋은 기회가 될 수 있다. 나사의 유로파 클리퍼(Europa Clipper)는 지난 10월에 발사된 로봇 탐사선으로, 유로파를 약 50회 비행하며, 이를 통해 위성의 거대한 지하 바다를 연구할 계획이다. 탐사선은 2030년 4월에 도착할 예정이다.
-
- IT/바이오
-
[우주의 속삭임(78)] 목성에 단단한 땅이나 바위가 없는 이유는?
-
-
미세 플라스틱, 구름 형성 촉진…극한 날씨와 기후변화 가속 우려
- 미세 플라스틱이 대기 중 구름 형성을 촉진시켜 극한 날씨와 기후 변화를 가속화시킨다는 연구 결과가 최근 발표됐다. 구름은 대기 중의 보이지 않는 기체인 수증기가 먼지와 같은 작은 부유 입자와 결합해 물방울이나 얼음 결정으로 변할 때 형성된다. 최근 발표된 연구에서 미세 플라스틱 입자도 동일한 효과를 낼 수 있는 것으로 밝혀졌다. 또 미세 플라스틱이 없는 물방울보다 섭씨 5~10도 더 따뜻한 온도에서 얼음 결정이 생성될 수 있음도 보여주었다고 더컨버세이션이 전했다. 연구 결과는 공기 중에 미세 플라스틱이 없었다면 구름이 형성되지 않았을 좀 더 따뜻한 조건에서 미세 플라스틱이 구름을 생성함으로써 날씨와 기후에 적지 않은 영향을 미칠 수 있음을 시사한다. 대기 화학자 중심으로 구성된 연구진은 다양한 유형의 입자가 액체 물과 접촉할 때 어떻게 구름 속에서 얼음이 형성되는지를 분석했다. 대기에서 지속적으로 발생하는 이 과정은 '핵 형성'이라고 부른다. 대기 중의 구름은 액체 물방울, 얼음 입자 또는 두 가지의 혼합물로 구성된다. 기온이 섭씨 0도에서 영하 38도 수준인 중상층 대기의 구름에서 얼음 결정은 일반적으로 건조한 토양의 미네랄 먼지 입자나 꽃가루 또는 박테리아와 같은 생물 입자 주위에 형성된다. 미세 플라스틱도 그런 입자 중 하나다. 미세 플라스틱은 너비 5mm 미만으로 연필 끝에 달린 지우개 정도의 크기다. 일부는 이보다 더 작고 미세하다. 미세 플라스틱은 매우 작기 때문에 공기 중으로 쉽게 이동할 수 있다. 구름 속의 얼음은 날씨와 기후에 중요한 영향을 미친다. 대부분의 강수는 얼음 입자로 시작되기 때문이다. 전 세계 대부분 지역의 구름은 대기 중으로 높이 확장되고 차가운 공기가 구름 꼭대기 수분을 얼린다. 얼음이 형성되면 주변의 액체에서 수증기를 끌어당기고, 얼음 결정은 떨어질 만큼 무거워진다. 얼음이 형성되지 않으면 구름은 비나 눈으로 내리기보다는 증발하는 경향이 있다. 구름은 또한 여러 가지 방식으로 날씨와 기후에 영향을 미친다. 지구 표면에서 들어오는 햇빛을 반사하여 냉각 효과를 내기도 하고 지구 표면에서 방출되는 일부 복사선을 흡수해 온난화 효과를 증폭시킨다. 반사되는 햇빛의 양은 구름에 포함된 액체 상태의 물과 얼음의 양에 따라 달라진다. 미세 플라스틱이 구름에서 얼음 입자를 증가시키면, 이 비율의 변화는 구름이 지구의 에너지 균형에 미치는 영향을 바꿀 수 있다. 물이 섭씨 0도에서 언다고 하지만, 항상 그런 것은 아니다. 먼지 입자와 같이 핵을 형성할 물질이 없다면 물은 섭씨 영하 38도까지 얼지 않고 과냉각될 수 있다. 더 따뜻한 온도에서 동결하려면 물에 녹지 않는 물질이 물방울에 존재해야 한다. 이 입자는 첫 번째 얼음 결정이 형성될 수 있는 표면을 제공한다. 미세 플라스틱이 존재하면 얼음 결정이 형성돼 비나 눈이 더 많이 내릴 수 있다. 연구진은 미세 플라스틱 조각이 물방울의 핵 역할을 할 수 있는지를 확인하기 위해 대기 중에서 가장 널리 퍼진 네 가지 플라스틱, 즉 저밀도 폴리에틸렌, 폴리프로필렌, 폴리염화비닐, 폴리에틸렌 테레프탈레이트를 이용했다. 각각은 깨끗한 상태와 자외선, 오존 및 산에 노출된 상태 두 가지로 테스트되었다. 이 모든 것이 대기 중에 존재하며 미세 플라스틱의 구성에 영향을 미칠 수 있다. 연구진은 미세 플라스틱을 작은 물방울에 현탁시키고, 물방울을 천천히 냉각시켜 어는 시점을 관찰했다. 또한 플라스틱 조각의 표면을 분석해 분자 구조를 파악했다. 얼음 핵 형성은 미세 플라스틱의 표면 화학 성질에 따라 달라질 수 있기 때문이었다. 테스트한 대부분의 플라스틱에서 물방울의 50%는 섭씨 영하 22도로 냉각될 때까지 얼었다. 일부 미세 플라스틱은 미세 플라스틱이 없는 물방울보다 더 따뜻한 온도에서 얼음 핵을 형성했다. 자외선, 오존 및 산에 노출되면 입자의 얼음 핵 형성 활동이 감소하는 경향이 있었다. 이는 얼음 핵 형성이 미세 플라스틱 입자 표면의 작은 화학적 변화에 민감하다는 것을 시사한다. 그러나 이 플라스틱들은 여전히 얼음 핵을 형성하므로 구름 속 얼음의 양에 영향을 미칠 수 있다. 미세 플라스틱이 날씨와 기후에 어떤 영향을 미치는지 이해하려면 구름이 형성되는 고도에서의 농도를 알아야 한다. 또 미네랄 먼지 및 생물학적 입자 등 얼음 핵 형성이 가능한 다른 입자와 비교해 미세 플라스틱의 농도를 확인해야 한다. 이러한 측정을 통해 미세 플라스틱이 구름 형성에 미치는 영향을 모델링할 수 있다. 플라스틱 조각은 크기와 구성이 다양하다. 향후 연구에서는 가소제와 착색제 등 첨가제가 포함된 플라스틱과 미세 플라스틱 입자를 이용해 분석을 진행할 계획이다.
-
- 포커스온
-
미세 플라스틱, 구름 형성 촉진…극한 날씨와 기후변화 가속 우려
-
-
[신소재 신기술(129] 암흑물질 실험서 중성미자 '구름' 첫 포착
- 이탈리아와 중국 과학자들이 최근 진행한 암흑물질 실험에서 중성미자 구름을 처음으로 포착해 학계의 이목을 집중시키고 있다. 우주에서 가장 풍부한 입자인 중성미자는 전하가 없고 질량이 거의 없는 아원자 입자로, 물질과 거의 상호 작용하지 않는 특징을 지닌다. 또한 감지 되지 않고 모든 물체를 통과하는 기이한 특성 때문에 '유령 입자'로 불리기도 한다. 참고로 원자를 구성하는 입자 중에서 가장 가벼운 전자조차도 중성미자보다 600만배 더 무겁다. 양성자는 전자보다 약 1836배 더 무겁고, 중성자는 전자보다 약 1839배 더 무겁다. 최근 이탈리아와 중국에서 각각 독립적으로 운영되는 암흑물질 검출 실험인 제논(XENON)과 판다X(PandaX) 연구팀이 암흑물질 주변에서 중성미자 구름을 처음으로 포착했다고 발표했다고 인터레스팅엔지니어링이 전했다. 제논 실험에 참가한 페이 가이오는 "이것은 암흑 물질 실험을 통해 천체물리적 중성미자를 측정한 최초의 사례"라고 말했다. 중성미자-핵 탄성 산란 통해 검출 중성미자는 일반적으로 중성미자-핵 탄성 산란(CEvNS) 과정을 통해 검출된다. 이는 중성미자가 양성자나 전자와 상호 작용하는 것이 아니라 원자핵 전체와 상호 작용하는 과정이다. 연구를 진행하는 동안 연구진은 2년 동안의 실험 데이터를 검토했다. XENON과 PandaX 연구팀은 액체 제논 검출기를 사용하여 암흑물질 입자 또는 중성미자가 제논 원자와 상호 작용하는 방식을 연구하는 과정에서 태양 핵에서 발생하는 붕소-8의 방사성 베타 붕괴에서 나오는 CEvNS 신호를 확인했다. XENON 연구팀은 11개의 CEvNS 신호를, PandaX 연구팀은 75개의 신호를 보고했으며, 두 실험 모두 통계적 신뢰도는 2.64 시그마(PandaX)와 2.73 시그마(XENON)로 유사했다. 듀크 대학교의 물리학 교수인 케이트 숄버그는 "저를 포함한 대부분의 사람들이 이 공동연구가 중성미자 안개를 측정했다고 확신한다"고 말했다. 이번 연구 결과는 암흑물질 주변에 밀집된 중성미자 구름의 존재를 시사하며, 이는 암흑물질 탐색에 새로운 과제를 제기한다. 중성미자는 검출이 어렵기 때문에 우주에 풍부하게 존재하는 중성미자는 암흑물질 검출 시 배경 잡음을 생성하여 암흑물질 신호를 구별하기 어렵게 만들 수 있다. 전문가 "중성미자 구름 위협 과장되었을 가능성…추가 연구 필요" 그러나 멜버른 대학교의 암흑물질 입자 물리학 전문가인 엘리사베타 바르베리오는 "중성미자 구름으로 인한 '존재적 위협'은 과장되었을 가능성이 있다"며 "이러한 배경 잡음이 암흑물질 연구의 진전을 막기 전에 해야 할 일이 많다"고 밝혔다. 그는 이번 실험에는 참가하지 않았다. 이번 연구 결과는 암흑물질과 중성미자 사이의 상호 작용을 이해하는 데 중요한 단서를 제공하며, 향후 암흑물질 탐색 연구에 영향을 미칠 것으로 예상된다. 이 연구는 미국 물리학회에서 발행하는 학술지 피지컬 리뷰 레터스(Physical Review Letters)에 게재됐다.
-
- IT/바이오
-
[신소재 신기술(129] 암흑물질 실험서 중성미자 '구름' 첫 포착
-
-
[퓨처 Eyes(56)] 전기 농업, 식량 위기 극복할 미래 농업의 혁신
- 햇빛 없이도 식물을 키운다? 마치 공상과학 영화에서나 나올 법한 이야기지만, 현실이 될 날이 머지않았다. 광합성은 지구 생명체의 근원이지만 에너지 효율은 겨우 1%에 불과하다. 이 비효율을 극복하고 미래 식량 위기를 해결할 혁신적인 기술이 바로 '전기 농업(electro-agriculture)'이다. 최근 생명공학 학술지 줄(Joule)에 발표된 논문에서 생명공학자들은 전기 농업이라는 새로운 식량 생산 패러다임을 선보였다. 태양 에너지를 이용해 CO₂를 식물의 먹이로 바꾸는 이 기술은, 햇빛에 의존하는 광합성을 대체하며 농업에 필요한 토지는 94%로 감소해 농업의 미래를 뒤흔들 잠재력을 지녔다. 광합성을 대체하는 전기 농업 캘리포니아 리버사이드 대학교의 생물공학자 로버트 진커슨(Robert Jinkerson) 교수와 워싱턴대학교 세인트루이스 캠퍼스의 전기화학자인 펑 지아오(Feng Jiao) 교수는 새로운 전기 농업 기술을 통해 농작물이 빛이 없는 환경에서도 자랄 수 있는 가능성을 제안했다. 농업의 혁신을 가져올 수 있다고 확신하는 진커슨은 "더 이상 햇빛을 필요로 하지 않는다면, 우리는 농업을 환경으로부터 완전히 분리해 통제된 실내 환경에서 식량을 재배할 수 있다"고 강조한다. 이는 농업이 더 이상 기후나 조건에 영향을 받지 않고 언제 어디서든 필요한 식량을 생산할 수 있음을 의미한다. 전기 농업은 단순히 빛을 대체하는 것 이상의 의미를 갖는다. 진커슨 교수의 연구팀은 태양광 패널을 통해 태양 에너지를 흡수하고, 이 에너지를 CO₂와 물 사이의 화학 반응에 활용해 아세트산염을 생성한다. 이 아세트산염은 식물이 에너지와 탄소 공급원으로 사용하게 된다. 진커슨 교수는 "우리는 식물의 발아 과정에서 사용되는 대사 경로를 다시 활성화시켜, 식물이 광합성 없이 아세트산염만으로도 자랄 수 있도록 연구하고 있다"고 덧붙였다. 현재 토마토와 상추를 대상으로 실험 중이며, 향후 고구마나 곡물 등 주요 작물로도 확장할 계획이다. 이 기술이 상용화될 경우, 전통 농업에서 발생하는 온실가스 배출을 크게 줄일 수 있다. 펑 자오 교수는 "현재 약 4%의 에너지 효율을 달성했으며, 이는 기존 광합성의 4배 수준이다. 이 방식이 더 효율적이기 때문에 식량 생산에 따른 CO₂ 배출량을 크게 감소시킬 수 있을 것"이라고 전망했다. 이는 농업의 환경적 부담을 대폭 줄일 뿐만 아니라, 식량 생산의 새로운 장을 열 수 있음을 의미한다. 빛 없도 농사를 지을 수 있는 전기 농업은 우주에서의 까다로운 식량 생산 문제도 해결할 수 있다. 기존 농업은 심각한 삼림 벌채로 이어지는 경우가 많은 데, 이는 생물다양성 손실과 기후 변화의 주요 원인이 되도 한다. 전기 농업은 작물 생산에 필요한 토지의 양을 대폭 줄임으로써 토지 개간에 따른 생태적 피해의 일부를 회복시킬 수 있다. 아울러 수로를 오염시키고 수생태계에 영향을 미칠 수 있는 비료와 살충제에 대한 의존도를 낮추므로 지속 가능한 식량 생산에 대한 유망한 대안을 제시한다. 전기 자극을 통한 수확량 증대 전기 농업의 또 다른 중요한 연구는 전기를 이용해 농작물의 성장을 촉진하는 방법이다. 이 기술은 19세기 말에서 20세기 초에 잠시 유행했던 '전기 재배(electroculture)'의 현대적 버전으로 볼 수 있다. 당시에는 전기를 식물에 직접 적용해 수확량을 늘리거나 해충을 제거하려는 시도가 있었으나, 명확한 과학적 근거 없이 실패한 사례들이 많았다. 하지만 오늘날 연구자들은 더 정교한 방법으로 전기를 농업에 적용하고 있다. 미국 앨라배마주의 오크우드 대학교 생화학자인 알렉산더 볼코프(Alexander Volkov) 교수는 저온 플라즈마(Cold Plasma)를 이용해 씨앗을 자극하는 연구를 진행 중이다. 이 연구에서는 식물의 수확량이 20~75% 증가한 결과를 얻었으며, 감자의 경우 수확량이 40%까지 늘어났다. 볼코프 교수는 "우리는 씨앗을 플라즈마로 1분 미만 처리했을 때, 수확량이 눈에 띄게 증가하는 것을 확인했다. 양배추 수확량도 75% 증가했으며, 맛도 더 달았다"라고 밝혔다. 씨앗의 플라즈마 처리는 농업 분야에 떠오르는 기술로, ㅊ플라즈마를 이용해 씨앗의 발아율을 높이고 생장을 촉진하는 기술이다. 플라즈마는 고체, 액체, 기체 상태 다음의 제4의 물질로, 이온, 전자, 중성 입자 등으로 구성된 이온화된 기체이다. 플라즈마는 씨앗 껍질의 표면을 변화시켜 물 흡수율을 높이고, 발아에 필요한 효소 활성을 증가시켜 발아율을 향상시킨다. 또한 플라즈마는 씨앗 내부의 생화학적 반응을 촉진해 뿌리와 씨앗의 생장을 촉진한다. 게다가 플라즈마는 씨앗 표면의 박테리아, 곰팡이 등 병원균을 살균해 씨앗의 건강을 증진시킨다. 저온 플라즈마는 단순히 씨앗의 수확량을 증가시키는 것뿐만 아니라 씨앗이 발아할 때 환경 스트레스를 덜 받게 만들어 준다. 셰튼홀 대학교의 호세 로페즈(Jose Lopez) 교수는 "씨앗이 처음 발아할 때는 외부 환경의 스트레스에 매우 취약하다. 플라즈마는 씨앗의 껍질을 미세하게 구멍을 내어. 씨앗이 물과 양분을 더 쉽게 흡수할 수 있도록 돋븐다"고 설명했다. 그 결과 플라즈마로 처리된 씨앗은 처리되지 않은 씨앗보다 훨씬 더 빠르게 자란다. 전기 농업의 미래 전기 농업을 도입한다면 자연 서식지의 점진적인 복원이 용이해지고, 생물 다양성이 향상되며 탄소 발자국을 줄일 수 있다. 이처럼 엄청난 잠재력에도 불구하고, 전기 농업은 여전히 해결해야 할 과제가 남아 있다. 핵심 문제로는 태양열 화학 반응기의 초기 설치 비용과 유지 관리, 그리고 대규모 실내 농업시설을 지원하는 데 필요한 인프라를 꼽을 수 있다. 또한 아세트산을 주요 에너지 원으로 사용할 때 식물 생리학에 미치는 장기적인 영향을 이해하기 위해서는 추가 연구가 필요하다. 진커슨은 "식물의 경우, 식물이 이런 방식으로 성장하도록 진화하지 않았기 때문에 아세트산염을 탄소원으로 활용하도록 하는 연구 개발 단계에 있다"고 말했다. 그는 "하지만 버섯과 효모, 해조류는 현재 이런 방식으로 재배할 수 있으므로 이러한 응용 분야가 먼저 상용화되고 식물은 나중에 상용화될 것으로 생각한다"고 덧붙였다. 전기 농업이 성공한다면 식량 생산 자체에 혁명을 일으킬 수 있는 환경 친화적이고 공간 효율적인 방법이 될 수 있다.
-
- 포커스온
-
[퓨처 Eyes(56)] 전기 농업, 식량 위기 극복할 미래 농업의 혁신
-
-
[우주의 속삭임(74)]토성 위성 타이탄, 10km 두께 메탄 얼음층 존재⋯행성 과학 새 지평 열어
- 토성의 위성 중 하나인 타이탄의 메탄 층에 대한 미스터리가 한겹 풀렸다. 타이탄은 토성의 위성 중 가장 큰 천체로, 태양계 내에서는 목성의 위성 가니메데에 이어 두 번째로 크다. 미국 하와이대학교 마노아 캠퍼스의 행성 과학자들은 새로운 연구를 통해 타이탄의 얼음 속에 메탄 가스가 갇혀 최대 10km 두께의 독특한 지각을 형성하고 있음을 밝혀냈다고 사이테크데일리가 보도했다. 이 지각은 그 아래 얼음층을 따뜻하게 하고 타이탄의 메탄 대기를 설명하는 데 도움이 될 것으로 예상된다. 타이탄의 메탄 미스터리 풀다 토성의 가장 큰 위성인 타이탄은 태양계에서 지구 외에 대기와 액체 상태의 바다, 강, 호수를 가진 유일한 천체다. 극도로 추운 기온 때문에 이 액체들은 메탄과 에탄 같은 탄화수소로 이루어져 있으며, 표면은 단단한 고체 물 얼음으로 구성되어 있다. 하와이 지구물리학 및 행성학 연구소(HIGP)의 로렌 슈어마이어 연구원이 이끄는 연구팀은 타이탄의 충돌 크레이터가 예상보다 수백 미터 얕다는 사실을 발견했다. 나사(NASA) 데이터에 따르면 타이탄에서 확인된 크레이터는 90개에 불과하며, 이는 타이탄의 표면과 지질학적 역사에 대한 흥미로운 질문을 제공한다. 크레이터 분석을 통한 통찰 슈어마이어 연구원은 "다른 위성들을 기반으로 했을 때 타이탄 표면에 더 많은 충돌 크레이터가 있고, 그 크레이터들은 우리가 관찰한 것보다 훨씬 더 깊을 것으로 예상했기 때문에 분화구가 실제로는 얕다는 사실이 매우 놀라웠다"고 말했다. 그는 "우리는 타이탄 특유의 무언가가 크레이터를 얕게 만들고 비교적 빠르게 분화구를 사라지게 한다는 것을 깨달았다"고 덧붙였다. 연구팀은 이 미스터리를 조사하기 위해 컴퓨터 모델을 사용해 타이탄의 얼음층이 메탄 클래스레이트 얼음층으로 덮여 있을 경우, 충돌 후 지형이 어떻게 변화흐는 지 시뮬레이션했다. 메탄 클래스레이트 얼음은 결정 구조 내에 메탄가스가 갇힌 일종의 고체 물 얼음이다. 타이탄 크레이터의 초기 형태는 알려져 있지 않기 때문에 연구팀은 비슷한 크기의 목성의 가니메데의 크레이터를 기반으로 두 가지 초기 깊이를 모델링하여 비교했다. 슈어마이어 연구원은 "이 모델링 접근 방식을 사용하여 메탄 클래스레이트 지각의 두께를 5~10km로 제한할 수 있었다. 이 두께를 사용한 시뮬레이션에서 관측된 크레이터와 가장 일치하는 크레이터 깊이가 생성되었기 때문이다"라고 설명했다. 그는 "메탄 클래스레이트 지각은 타이탄의 내부를 따뜻하게 하고 놀라울 정도로 빠른 지형 이완을 유발하며, 이는 지구의 빠르게 움직이는 따뜻한 빙하와 비슷한 속도로 크레이터를 얕게 만든다"라고 부연했다. 타이탄 대기에 미치는 메탄의 영향 메탄 얼음층의 두께를 추정하는 것은 타이탄의 메탄 대기 기원을 설명하고 연구자들이 타이탄의 탄소 순환, 액체 메탄 기반 '수문 순환(물이 끊임 없이 이동하는 현상)' 및 기후 변화를 이해하는 데 도움이 되기 때문에 중요하다. 슈어마이어 연구원은 "타이탄은 온실가스 메탄이 대기를 어떻게 따뜻하게 하고 순환하는지 연구할 수 있는 천연 실험실"이라고 말했다. 그는 "시베리아 영구 동토층과 북극 해저 아래에서 발견되는 지구의 메탄 클래스레이트 수화물은 현재 불안정해지고 메탄을 방출하고 있다. 따라서 타이탄에서 얻은 교훈은 지구에서 일어나는 과정에 중요한 통찰력을 제공할 수 있다"고 덧붙였다. 타이탄의 생명체 존재 가능성 이러한 새로운 발견에 비추어 볼 때 타이탄에서 볼 수 있는 지형은 따뜻할 수도 있다. 메탄 클래스레이트 얼음 지각의 두께를 제한함으로써 타이탄의 내부가 이전에 생각했던 것처럼 차갑고 딱딱하며 비활성 상태가 아니라 따뜻할 가능성이 있음을 알 수 있다는 것. 슈어마이어 연구원은 "메탄 클래스레이트는 일반적인 물 얼음보다 강하고 단열성이 뛰어나다"면서 "클래스레이트 지각은 타이탄의 내부를 단열하고 물 얼음층을 매우 따뜻하고 연성으로 만들며 타이탄의 얼음층이 천천히 대류하고 있거나 대류했음을 의미한다"고 설명했다. 향후 탐사 임무 슈어마이어 연구원은 "두꺼운 얼음층 아래 타이탄의 바다에 생명체가 존재한다면, 생명체의 흔적(바이오마커)은 우리가 미래 임무를 통해 더 쉽게 접근하거나 볼 수 있는 곳까지 타이탄의 얼음층 위로 운반되어야 할 것"이라면서 "이는 타이탄의 얼음층이 따뜻하고 대류하는 경우 발생할 가능성이 더 크다"고 말했다. 연구팀은 2028년 7월 발사되어 2034년 타이탄에 도착할 예정인 NASA 드래곤플라이 미션을 통해 이 위성을 가까이에서 관찰하고, 셀크라는 크레이터를 포함한 얼음 표면을 추가로 조사할 수 있는 기회를 갖게 될 것이다. ◇ 참고 문헌: Schurmeier, L. R., Brouwer, G. E., Kay, J. P., Fagents, S. A., Marusiak, A. G., & Vance, S. D. (2024). Rapid Impact Crater Relaxation Caused by an Insulating Methane Clathrate Crust on Titan. The Planetary Science Journal, DOI: 10.3847/PSJ/ad7018
-
- IT/바이오
-
[우주의 속삭임(74)]토성 위성 타이탄, 10km 두께 메탄 얼음층 존재⋯행성 과학 새 지평 열어
-
-
[우주의 속삭임(73)] 지구에 떨어지는 운석, 대부분 '같은 곳'에서 왔다?
- 밤하늘을 가로지며 떨어지는 유성은 늘 보는 사람들을 매료시킨다. 그렇다면 지구에 도달해 밤하늘을 환하게 밝히는 유성은 과연 어디에서 왔을까? 우리 말에 유성과 별똥별이 있다. 일반적으로 비슷한 의미로 혼동하기 쉽지만 유성과 별똥별은 엄밀히 말하면 다른 뜻이다. 우주 공간을 돌아다니는 아주 작은 먼지나 돌멩이를 유성체라고 한다. 유성체가 지구 대기권으로 진입하면서 공기와의 마찰로 인해 빛을 내는 현상을 유성이라고 한다. 유성체가 대기 중에서 완전히 타지 않고 지표면까지 떨어진 것을 운석, 우리말로는 별똥별이라고 부른다. 매년 약 1만7000개의 유성이 지구 대기권에 진입하며, 그중 일부는 지표면에까지 도달한다. 과학자들은 이러한 운석을 통해 우주의 비밀을 탐구한다. 운석의 기원은 달이나 화성 등 다양하지만 대부분은 소행성에서 유래한다고 PHYS가 전했다. 최근 네이처(Nature)지에 발표된 두 연구는 이러한 운석의 기원을 더욱 명확히 밝혀냈다. 체코 카렐 대학교의 미로슬라프 브로즈(Miroslav Brož)와 유럽 남방 천문대의 미카엘 마셋(Michaël Marsset)이 이끄는 연구팀은 대부분의 운석이 소수의 소행성, 심지어는 특정 소행성에서 비롯되었다고 밝혔다. 이는 지구와 태양계 역사를 형성한 사건들에 대한 이해를 넓히는 데 기여한다. 이번 연구 결과는 학술지 네이처(Nature)에 게재됐다. 운석이란 무엇인가? 앞서 설명했듯이 유성이 지구 표면에 도달하면 '운석(meteorite)'이라고 부른다. 운석은 크게 석질운석, 철질운석, 석철질 운석 세 가지로 나뉜다. 석질운석 중 가장 흔한 종류는 '콘드라이트(chondrites)'로, 용융된 액체 방울 형태의 구형 입자를 포함하며 전체 운석의 85%를 차지한다. 대부분은 '일반 콘드라이트'로 철 함량과 광물 성분에 따라 H, L, LL의 세 가지 유형으로 나뉜다. '탄소질 콘드라이트(Carbonaceous chondrites)'는 점토 광물에 다량의 물과 아미노산 같은 유기물을 함유하고 있으며, 용융되지 않는 태양계 초기의 먼지 샘플이다. 반면 '아콘드라이트(achondrites)'는 콘드라이트와 달리 구형 입자가 없으며, 행성체에서 용융 과정을 거쳤다. 운석의 주요 공급원 '소행성대' 태양 주위를 공전하는 작은 천체인 소행성은 운석의 주요 공급원이다. 행성처럼 태양 주위를 돌지만, 행성보다 훨씬 작고 모양도 불규칙적인 경우가 많다. 대부분의 소행성은 화성과 목성 궤도 사이에 있는 '소행성대(Asteriod belt)'에 모여있으며, 목성의 중력에 의해 궤도를 돌고 있다. 목성과의 상호작용은 소행성 궤도를 교란시켜 충돌을 유발하고, 그 결과 발생한 파편들이 모여 '돌무더기 소행성'을 형성한다. 최근 하야부사와 오시리스-렉스 탐사선은 이러한 소행성에서 샘플을 채취해 지구로 가져왔다. 과학자들은 이룰 통해 특정 소행성 유형과 지구에 떨어지는 운석 사이의 연관성을 확인했다. 석질운석과 S형 소행성은 소행성대 안쪽에, 탄소질 콘드라이트와 유사한 C형 소행성은 바깥쪽에 분포한다. 소행성 '코로니스'와 '마살리아' 이번의 새로운 두 연구는 일반 콘드라이트 유형의 기원을 특정 소행성군, 특히 '코로니스'와 '마살리아' 소행성군으로 추적했다. 이는 운석 궤적 분석, 개별 소행성 관측, 모체 궤도 진화 모델링 등의 복잡한 과정을 통해 이루어졌다. 브로즈가 주도한 연구에 따르면 일반 콘드라이트는 3000만년 전에 발생한 지름 30km 이상의 소행성 충돌에서 비롯된 것으로 밝혀졌다. 상세한 컴퓨터 모델링에 따르면 코로니스와 마살리아 소행성군은 적절한 크기의 천체를 가지고 있으며 지구에 운석을 공급할 수 있는 위치에 있다. 특히 코로니스 소행성군의 '코로니스'와 '카린'은 H 콘드라이트의 주요 공급원일 가능성이 높으며 마살리아(L)와 플로라(LL) 계열은 L- 및 LL- 콘드라이트의 주요 공급원이다. 마셋이 주도한 연구는 마살리아에서 발견된 L 콘드라이트 운석의 기원에 대해 자세히 설명한다. 연구팀은 화성과 목성 사이의 소행성대에서 분자의 지문이 될 수 있는 특징적인 빛의 세기인 분광 데이터를 수집했다. 그 결과 지구에 있는 L 콘드라이트 운석의 구성이 마살리아 소행성 계열의 운석과 매우 유사하다는 사실이 밝혀졌다. 그런 다음 과학자들은 컴퓨터 모델링을 사용하여 약 4억 7000만 년 전에 발생한 소행성 충돌이 마살리아 소행성군을 형성했음을 보여주었다. 우연히도 이 충돌로 인해 스웨덴의 오르도비스기 석회암에서 풍부한 화석 운석이 발견되기도 했다. 이러한 연구 결과는 지구에 떨어지는 운석의 기원을 밝히고 태양계 형성 과정에 대한 이해를 높이는 중요한 역할을 한다. 또한 향후 운석의 기원 소행성을 탐사하는 임무의 기초 자료로 활용될 수 있을 것으로 기대된다.
-
- IT/바이오
-
[우주의 속삭임(73)] 지구에 떨어지는 운석, 대부분 '같은 곳'에서 왔다?
-
-
[우주의 속삭임(69)] 화성, 왜 생명체가 살 수 없게 됐나?
- 현재 화성의 게일 분화구를 탐사하고 있는 나사(NASA)의 탐사선 큐리오시티가 초기 화성의 기후가 생명체가 살기에 적합했던 상황(표면에 광범위한 물이 있다는 증거)에서 어떻게 생명체가 살기에 부적합한 곳으로 바뀌었는지에 대한 새로운 세부 정보를 제공하고 있다고 나사가 홈페이지를 통해 밝혔다. 화성 표면은 매우 차갑고 오늘날 생명체가 살기에는 부적합하지만, 전문가들은 나사의 화성 탐사선은 먼 과거에 화성에 생명체가 살았을 수 있는지에 대한 단서를 찾고 있다. 그런 가운데 연구진이 큐리오시티에 탑재된 장비를 이용해 게일 분화구에서 발견된 탄소가 풍부한 광물(탄산염)의 동위원소 구성을 측정했고, 화성의 고대 기후가 어떻게 변화했는지에 대한 새로운 정보를 찾아냈다. 메릴랜드주에 소재한 나사 고다드 우주비행센터의 데이비드 버트 박사는 최근 미국 국립과학원회보에 발표된 연구 논문에서 "이 탄산염의 동위원소 값은 극심한 양의 증발이 있었음을 알려주며, 탄산염은 일시적인 액체 상태의 물만을 지탱할 수 있는 기후에서 형성되었을 가능성이 높다“라고 말했다. 그는 "채취한 탄산염 샘플은 화성 표면에서 생명체가 살았던 고대 환경(생물권)과 일치하지는 않지만, 탄산염이 형성되기 전 생물권이 있었을 가능성을 배제하지는 않는다"고 덧붙였다. 즉, 화성은 탄산염이 생성되기 전 물이 풍부했을 때에는 생물권이 있었을 가능성이 있지만, 갑작스러운 액체 상태 물의 대규모 증발로 인해 물이 마르고 그 과정에서 탄소가 풍부한 탄산염이 만들어졌을 가능성이 있다는 것이다. 동위원소는 원자 번호는 같지만, 질량이 다른 원자를 말한다. 물이 급속도로 증발함에 따라 가벼운 탄소와 산소는 대기 중으로 빠져나가고, 무거운 탄소 원자는 남아 더 많은 양이 축적되어 결국 탄산염 암석과 결합됐다. 과학자들이 탄산염에 관심을 갖는 이유는 기후에 대한 기록, 즉 증거로 작용할 수 있기 때문이다. 이러한 광물은 물의 온도와 산성도, 물과 대기의 구성을 포함, 광물이 형성된 당시 환경의 특징을 그대로 보존한다. 이 논문은 게일 분화구에서 발견된 탄산염에 대한 두 가지 형성 가능성을 제안하고 있다. 첫 번째는 탄산염이 게일 분화구 내에서 일련의 습윤-건조 순환을 통해 만들어졌다는 것이다. 두 번째는 탄산염이 게일 분화구에서 극저온 조건 아래 매우 염분이 많은 물에서 형성됐을 것이라는 가능성이다. 공동 연구자인 나사의 제니퍼 스턴 박사는 "이러한 형성 메커니즘은 서로 다른 생명체 거주 가능성 시나리오를 제시하는 두 가지 다른 기후 체제를 보인다"며 "첫 번째 시나리오인 습윤-건조 순환은 더 살기 좋은 환경과 덜 좋은 환경 사이의 교차를 나타낸다. 반면, 두 번째 시나리오에서 화성 중위도의 극저온 기온은 대부분의 물이 얼어 있고 염분이 많아 거주 가능성이 낮은 환경을 보인다"고 말했다. 첫 번째 시나리오에서 생명체의 거주 가능성이 높음을 시사한다. 고대 화성에 대한 이 같은 기후 시나리오는 특정 광물의 존재, 대규모의 모델링 및 암석층 형성의 식별을 기반으로 제안됐다. 이 결과는 시나리오를 뒷받침하는 암석 샘플의 동위원소 증거를 추가한 최초의 결과다. 화성 탄산염의 중금속 동위원소 값은 지구의 탄산염 광물보다 매우 높으며, 화성 광물에서 기록된 가장 무거운 탄소 및 산소 동위원소 값이다. 연구진에 따르면 습윤-건조 또는 차갑고 염분이 많은 두 가지 기후 시나리오는 모두 중금속 탄소와 산소가 풍부한 탄산염을 형성하는 데 필요하다. 이 발견은 큐리오시티 탐사선에 실린 화성 샘플분석(SAM) 및 레이저분광기(TLS) 장비를 사용해 이루어졌다. SAM은 샘플을 섭씨 900도까지 가열한 다음 TLS를 사용해 가열 단계에서 생성되는 가스를 분석한다. 한편, 이 작업에 대한 자금 지원은 나사의 화성 탐사 프로그램을 통해 지원됐다.
-
- IT/바이오
-
[우주의 속삭임(69)] 화성, 왜 생명체가 살 수 없게 됐나?
-
-
[신소재 신기술(114)] 상어 장 모방한 3D 프린팅 파이프, 역류 없는 액체 흐름 구현
- 미국 과학자들이 상어의 소화기관에서 영감을 얻어 한 방향으로만 흐르는 파이프를 3D 프린팅 기술로 제작했다. 워싱턴대학교(UW) 연구팀은 상어의 나선형 장 구조를 모방해 3D 프린팅 기술로 '한 방향 흐름 파이프'를 개발했다고 과학 전문매체 뉴아틀라스가 전했다. 이 파이프는 액체가 역류하지 않고 한 방향으로만 흐르도록 설계되어, 상어의 소화기관처럼 효율적인 물질 이동을 가능하게 한다. 인간의 장은 속이 빈 튜브에 불과하지만 상어의 장은 아래쪽 부분에 나선형 판막이라는 것이 있다. 이 나선형 판막은 비교적 짧고 굵은 장의 일부로, 내부에 일종의 코르크 마개와 같은 나선형 구조가 있다. 이 구조는 음식물의 이동 속도를 늦추고 표면적을 넓혀 영양분 흡수 효율을 높이는 역할을 한다. 또한 나선형 장의 구조는 음식물의 역류를 방지하는 데도 도움이 된다. 연구팀은 다양한 형태의 나선형 구조를 가진 파이프를 제작하고 실험을 통해 최적의 구조를 찾아냈다. 그 결과 개발된 파이프는 기존의 무빙 파트가 없는 한 방향 흐름 장치인 태슬라 밸브보다 뛰어난 성능을 보였다. 테슬라 밸브(Tesla Valve)는 니콜라 테슬라가 1920년에 발명한 특수한 형태의 유체 흐름 제어 장치다. 움직이는 부품 없이 유체의 흐름을 제어하는 것이 특징이다. 여러 개의 물방울 모양 루프가 파이프 내부에 배열되어 유체가 순 방향으로 흘르 때는 루프를 따라 부드럽게 통ㅎ과하지만, 약방향으로 흐르려고 하면 루프에 의해 와류가 발생하고 흐름이 저항을 받아 통과가 어려워진다. 특히 부드러운 소재로 제작된 이 파이프는 테슬라 밸브보다 최소 7배 이상 효율적인 흐름을 보였다. 그러나 연구팀은 파이프가 상어의 장 조직보다 100배나 더 단단해 앞으로 개선의 여지가 있다고 밝혔다. 이번 연구는 부드럽고 강하며 프린팅 가능한 폴리머 개발에 대한 화학자들의 동기를 더욱 강화할 것으로 기대된다. 이러한 폴리머는 공학, 의학 등 다양한 분야에서 유체 흐름 제어에 활용될 수 있을 것으로 전망된다. 이번 연구 결과는 미국 국립학회보(PNAS)에 게재됐다.
-
- IT/바이오
-
[신소재 신기술(114)] 상어 장 모방한 3D 프린팅 파이프, 역류 없는 액체 흐름 구현
-
-
[신소재 신기술(113)] 美 조지아 공대, 리튬이온배터리 획기적 개선 음극재 개발
- 전기자동차(EV) 시장의 케즘(chasm·일시적 수요 정체) 극복 방안의 하나로 '차세대 배터리'가 거론되는 가운데 미국에서 새로운 음극 소재가 개발됐다. 조지아 공과대학은 홈페이지를 통해 하이롱 첸(Hailong Chen) 교수가 이끄는 다기관 연구팀은 리튬이온배터리(LIBs)를 획기적으로 개선할 수 있는 저렴한 새로운 음극 소재를 개발했다고 밝혔다. 이는 전기자동차 시장과 대규모 에너지 저장 시스템을 변화시킬 가능성이 있다. 조지아공대 우드러프 기계공학부 및 재료과학·공학부 하이롱 첸 부교수는 "오랫동안 사람들은 기존 음극재보다 저렴하고 지속 가능한 대안을 찾고 있었다. 우리가 그걸 찾은 것 같다"고 말했다. 연구팀에 따르면 획기적인 소재인 삼염화철(FeCl3)은 일반적인 음극재 비용의 1~2%에 불과하지만 동일한 양의 전기를 저장할 수 있다. 음극재는 용량, 에너지 및 효율성에 영향을 미치며 배터리 성능과 수명, 경제성에 중요한 역할을 한다. 첸 교수는 "우리 음극재는 게임 체인저가 될 수 있다"며 "이는 전기차 시장 뿐만 아니라 전체 리튬 이온 배터리 시장을 크게 개선할 것"이라고 말했다. 연구 결과는 학술지 네이처 서스테너빌리티(Nature Sustainability)에 게재됐다. 1990년대 초 소니에 의해 처음 상용화된 리튬이온배터리(LIB)는 스마트폰이나 테블릿과 같은 개인용 전자제품의 폭발적인 성장을 촉발했다. 이 기술은 결국 전기자동차에 동력을 공급하는 신뢰할 수 있고 충전 가능한 고밀도 에너지원으로 발전했다. 그러나 개인용 전자 제품과 달리 전기차와 같은 대규모 에너지 사용자는 LIB 비용에 특히 민감하다. 현재 배터리는 전기차 총 비용의 50%를 차지하며, 이로 인해 이러한 청정 에너지 자동차는 내연 기관 자동차보다 더 비싸다. 더 나은 배터리 구축 구식 알카라인 배터리와 납축 배터리에 비해 리튬이온배터리는 더 작은 패키지에 더 많은 에너지를 저장하고 충전 장치에 더 오래 전원을 공급한다. 그러나 리튬이온배터리에는 코발트나 니켈과 같은 희귀 속이 포함되어 있으며 제조 비용이 높다. 지금까지 LIB용으로 네 가지 유형의 음극만 성공적으로 상용화됐다. 기존 LIB는 액체 전해질을 사용하여 에너지 저장 및 방출을 위한 리튬 이온을 운반한다. 저장할 수 있는 에너지 양에는 엄격한 제한이 있으며 누출 및 화재가 발생할 수 있다. 그러나 모든 고체리튬이온배터리는 고체 전해질을 사용하여 배터리 효율성과 안정성을 크게 높이고 더 안전하게 더 많은 에너지를 저장할 수 있도록 한다. 아직 개발 및 테스트 단계에 있는 이러한 배터리는 상당한 개선이 될 것이다. 연구팀이 개발한 FeCl3 음극, 고체 전해질 및 리튬 금속 양극을 사용하면 전체 배터리 시스템 비용이 현재 LIB의 30-40%에 불과하다. 첸 교수는 "이는 전기차를 내연 기관 자동차보다 훨씬 저렴하게 만들뿐만 아니라 새롭고 유망한 형태의 대규모 에너지 저장 장치를 제공해 전력망의 복원력을 향상시킨다"고 말했다. 이어 "또한 우리가 개발한 음극은 전기차 시장의 지속 가능성과 공급망 안정을 크게 향상시킬 것"이라고 기대했다. 음극재로 염화철(FeCl3) 주목 음극재로서의 FeCl3에 대한 첸의 관심은 고체 전해질 재료 연구에서 시작됐다. 그의 연구실은 2019년부터 기존 상용 산화물 기반 음극을 사용해 고체 배터리를 만들려고 시도했다. 결과는 좋지 않았다. 음극과 전해질 재료가 잘 맞지 않았던 것. 연구원들은 염화물 기반 음극이 염화물 전해질과 더 나은 쌍을 이루어 더 나은 배터리 성능을 제공할 수 있다는 점에 착안했다. 첸 교수는 "우리는 시도해볼 가치가 있는 후보(FeCl3)를 찾았다. 결정구조가 리튬이온 저장 및 운송에 잠재적으로 적합했기 때문이다"라고 설명했다. 현재 전기차에서 가장 많이 사용되는 음극은 산화물이며 엄청난 양의 값비싼 니켈과 코발트가 필요하다. 이는 독성이 있을 수 있으며 환경 문제를 야기할 수 있는 중금속이다. 이와 대조적으로 연구팀이 개발한 새로운 음극에는 철(Fe)과 염소(Cl)만 포함되어 있다. 이는 강철과 식용 소금에서 발견되는 풍부하고 저렴하며 널리 사용되는 원소들이다. 초기 테스트에서 FeCl3는 다른 훨씬 더 비싼 음극만큼 또는 더 나은 성능을 발휘하는 것으로 나타났다. 예를 들어 널리 사용되는 음극 리튬철인산염(LiFePO4, LIF)보다 작동 전압이 더 높다. 작동 전압은 배터리가 장치에 연결될 때 제공하는 전기력으로 정원에서 사용하는 호스의 수압과 유사하다. 연구팀은 이 기술이 5년 이내에 전기차에서 상업적으로 실행 가능할 수 있을 것으로 기대했다. 첸은 현재로서는 연구팀이 FeCl3와 관련 소재를 계속 연구할 것이라고 말했다. ◇ 참고: Zhantao Liu, Jue Liu, Simin Zhao, Sangni Xun, Paul Byaruhanga, Shuo Chen, Yuanzhi Tang, Ting Zhu, Hailong Chen. 「모든 고체 리튬 이온 배터리를 위한 저비용 삼염화철 음극」 Nature Sustainability.
-
- IT/바이오
-
[신소재 신기술(113)] 美 조지아 공대, 리튬이온배터리 획기적 개선 음극재 개발
-
-
[우주의 속삭임(57)] 다량의 철분 섞인 바람 부는 외계 행성 발견
- 다양한 환경 조건을 갖춘 외계 행성이 새로 발견되었다. 'WASP-76b'라는 이름이 붙여진 이 외계 행성은 낮 온도가 무려 2000도 이상으로 치솟는 극단적인 행성 중 하나라고 사이언스얼라트가 전했다. 스위스 제네바 대학교가 주축이 된 천문학자 팀은 이 외계 행성에 대한 연구를 진행, 천문학 및 천체물리학(Astronomy & Astrophysics) 저널에 WASP-76b 대기에 강렬한 '철분 섞인 바람, 소위 철풍'이 불고 있다는 증거를 발견했다고 발표했다. 보고서에 따르면 연구진은 이 행성이 10년 전 발견됐던 당시에 생각했던 것보다 훨씬 더 특이하다는 사실을 발견했다. 이 행성은 모항성에 단단히 고정되어 있어 행성을 둘러싸고 강렬한 바람이 불고 있다. 바람에는 대기의 하층에서 상층으로 흐르는 많은 양의 철 원자가 포함되어 있다고 한다. 지구에서는 찾을 수 없는 철풍이 불고 있다는 것이다. 외계 행성은 태양계 밖에 존재한다. 따라서 태양이 아닌 다른 항성을 공전한다. 외계 행성의 첫 발견은 지난 1990년대로 거슬러 올라간다. 그 이후 현재까지 5200개 이상의 외계 행성이 발견되었다. 그중 다수는 목성이나 토성과 같은 거대 가스 행성이고, 다른 것들은 거주 가능성을 배제한 '작은 암석의 지구'와 유사하다. 더욱 진보된 망원경과 탐지 기술이 개발됨에 따라, 관찰 범위와 수준은 더욱 높아지고 있기 때문에 외계 행성을 찾아내거나 탐사할 수 있는 능력도 높아질 것으로 기대된다. 발견된 외계 행성 중 하나인 WASP-76b는 최근 많은 주목을 받았다. 이 행성은 물고기자리 방향으로 지구로부터 640광년 떨어진 초고온 가스 거성이다. 지난 2013년에 발견되었으며, 모항성과 매우 가까운 궤도를 돌고 있다. 지구 기준으로 단 1.8일 만에 궤도를 한 바퀴 돌았다. 항성과 매우 가까운 거리에 있어 주간 기온은 2000도 이상으로 극심하게 상승했다. 강렬한 열이 지표면의 철을 증발시켜 대량의 철 원소가 바람에 실려 날리고, 밤에 차가워지면 다시 액체로 응축돼 철비로 떨어지는 것으로 추정된다. 천문학자들은 이 행성이 발견된 이후 초고온 목성의 대기 메커니즘을 규명하기 위해 이 행성 연구에 집중해 왔다. 같은 초고온 가스 거성이었기 때문이다. 이 행성은 진정 매혹적인 모습을 보여주었다. 지난해 4월에는 무지개도 감지되었다. 연구팀은 온도가 훨씬 높은 낮 시간대에 더욱 세심한 주의를 기울였다. 팀은 유럽 남방천문대의 초대형 망원경에 설치된 에스프레소(ESPRESSO) 분광기를 사용했다. 이 분광기는 안정성과 높은 광분해 능력으로 유명하여 항성에서 분출되는 빛 스펙트럼에서 놀라울 정도로 미세한 수준의 세부 사항까지 식별할 수 있다. 연구팀은 고해상도 방출 분광법 기술을 사용해 가시광선 스펙트럼을 연구했다. 이 방식은 스펙트럼에서 방출선을 감지해 내 화학적 구성을 디코딩할 수 있다. 여기서 연구팀은 철의 화학적 특징을 감지했고, 철분이 대기의 낮은 층에서 높은 층으로 이동하고 있음을 발견했다. 한편 외계 행성의 대기 연구는 우주 행성들의 환경을 더 깊이 이해할 수 있도록 한다. 가스 행성인 WASP-76b에 대한 연구는 모항성에서 극한 수준의 방사선 폭격을 받는 태양계를 비롯, 우주 세계의 기후에 대한 많은 정보를 제공해 주고 있다.
-
- IT/바이오
-
[우주의 속삭임(57)] 다량의 철분 섞인 바람 부는 외계 행성 발견
-
-
화성 '거미' 지형, NASA 실험실서 최초 재현 성공
- 미 항공우주국(나사·NASA) 과학자들이 실험실에서 화성의 거미 지형 재현에 성공했다고 나사가 지난 11일(현지시간) 홈페이지를 통해 밝혔다. 2003년 궤도선 이미지를 통해 발견된 이후, 화성 남반구에 펼쳐진 거미 모양의 지형은 그동안 과학자들의 호기심을 자극해 왔다. 각각의 가지 형태는 길이가 1km 이상 뻗어 있으며 수백 개의 가느다란 '다리'를 포함하고 있다. '아라네이폼 지형'이라고 불리는 이 지형은 종종 군집을 이루어 표면에 주름진 모습을 띠고 있다. 지금까지는 지구에는 자연적으로 존재하지 않는 이산화탄소 얼음과 관련된 과정을 통해 이 '거미' 지형이 생성된다는 이론이 지배적이었다. 하지만 최근 '행성과학저널(The Planetary Science Journal)'에 발표된 논문에 따르면, 과학자들은 화성의 온도와 기압을 모방한 환경에서 처음으로 이러한 형성 과정을 재현하는 데 성공했다. NASA 제트추진연구소(JPL)의 로렌 맥키온은 "이 거미들은 그 자체로도 기이하고 아름다운 지질적 특징"이라며 "이번 실험은 거미 지형이 어떻게 형성되는 지에 대한 모델을 개선하는 데 도움이 될 것"이라고 말했다. 이번 연구는 '키퍼 모델(Kieffer model)'에서 설명하는 몇 가지 형성 과정을 확인했다. 키퍼 모델은 화성의 남반구에서 발견되는 독특한 거미 모양 지형 즉 '아라네이폼' 지형의 형성 과정을 설명하는 이론이다. 이 모델은 햇빛, 이산화탄소 얼음, 그리고 토양 사이의 상호 작용을 통해 이러한 지형이 만들어진다고 설명한다. 화성의 거미 지형이 만들어지는 원리는 다음과 같다. 먼저 겨울마다 화성 표면에 쌓이는 투명한 이산화탄소 얼음층을 통해 햇빛이 토양을 가열한다. 토양은 위의 얼음보다 어둡기 때문에 열을 흡수하고, 그 결과 가장 가까운 얼음이 액체 상태를 거치지 않고 바로 가스로 변하는 '승화' 과정이 발생한다. 드라이아이스가 액체가 아닌 기체 상태로 바로 변하는 것이 승화다. 다음으로 가스 압력이 증가하면 화성의 얼음에 균열이 생기고 가스가 빠져나갈 수 있게 된다. 가스가 위로 스며 나오면서 토양에서 나온 어두운 먼지와 모래를 함께 끌고 올라가 얼음 표면에 쌓이면서 거미 다리와 같은 모양이 생성된다. 즉, 키퍼 모델 이론에 따르면 겨울이 봄으로 바뀌고 남은 얼음이 승화하면 가스 분출로 인해 거미 모양 지형이 남게 된다. 실험실에서 화성 재현 연구팀에게 가장 아려운 부분은 화성 극지 표면의 조건, 즉 극도로 낮은 기압과 영하 185도에 이르는 낮은 온도를 재현하는 것이었다. 이를 위해 맥키온은 JPL의 액체 질소 냉각 테스트 챔버인 DUSTIE((Dirty Under-vacuum Simulation Testbed for Icy Environments)를 사용했다. 맥키온은 "DUSTIE를 좋아한다. 역사적인 장비다"라며 와인통 크기의 이 챔버가 NASA의 화성 탐사선 피닉스 착륙용으로 설계된 긁는 도구 프로토타입을 테스트하는 데 사용되었다고 밝혔다. 이 도구는 탐사선이 화성 북극 근처에서 물로된 얼음을 깨고 물을 퍼올려 분석하는 데 사용됐다. 이번 실험에서 연구원들은 액체 질소 욕조에 담긴 용기에 화성 토양 시뮬레이션 물질을 넣고 냉각했다. 그런 다음 이를 DUSTIE 챔버에 넣고 화성 남반구와 유사한 기압으로 낮췄다. 이후 이산화탄소 가스를 챔버에 주입하고 3~%시간 동안 기체에서 얼음으로 응축시켰다. 맥키온은 실험에 적합할 만큼 충분히 두껍고 투명한 얼음을 얻기 위해 여러번 시도해야 했다. 화성 남반구와 적절한 특성을 가진 얼음을 얻은 후에는 챔버 내부 시뮬레이션 물질 아래에 히터를 놓고 가열해 얼음 균열을 일으켰다. 맥키온은 마침내 분말 시뮬레이션 물질 내부에서 이산화탄소 가스 기둥이 분출되는 것을 보고 기뻐했다. 그는 "금요일 늦은 저녁이었는데, 실험실 관리자가 제 비명 소리를 듣고 뛰어왔다"며 5년 동안 이런 기둥을 만들기 위해 노력해왔다고 말했다. 어두운 기둥은 시뮬레이션 물질에서 구멍을 뚫고 뿜어져 나왔고, 모든 압축 가스가 배출될 때까지 10분 동안 시뮬레이션 물질을 분출했다. 실험 결과, 키퍼 모델에는 반영되지 않은 놀라운 사실이 발견됐다. 시뮬레이션 물질 알갱이 사이에 얼음이 형성된 후 균열이 생긴 것이다. 이러한 과정은 왜 '거미 지형'이 더 갈라진 모습을 갖는 지 설명했다. 갈라짐 현상 발생 여부는 토양 알갱이의 크기와 지하에 얼음이 얼마나 묻혀 있는지에 따라 달라지는 것으로 보인다. JPL의 세리나 디니에가는 "이것은 자연이 교과서 이미지보다 조금 더 복잡하다는 것을 보여주는 세부 사항 중 하나"라고 말했다. 향후 거미 지형 기둥 테스트 계획 기둥 형성 조건을 찾은 연구팀은 다음 단계로 아래의 히터 대신 위에서 인공 태양을 비추는 실험을 시도할 계획이다. 이를 통해 연구팀은 기둥과 토양 분출이 발생할 수 있는 조건의 범위를 좁힐 수 있을 것으로 보인다. 그럼에도 실험실에서는 답할 수 없는 거미 지형에 대한 많은 질문이 남아 있다. △왜 화성의 특정 지역에서만 거미 지형이 형성되었을까? △계절 변화의 결과로 나타나는 것으로 보이는 거미 지형은 왜 시간이 지나도 그 수나 크기가 증가하지 않는 것일까? 등이다. 거미 지형은 화성의 기후가 달랐던 먼 과거에 형성되었을 가능성도 있으며, 화성의 과거를 들여다 볼 수 있는 독특한 창을 제공할 수도 있다. 과학자들은 당분간 실험실 실험을 통해서만 화성의 거미 지형에 가까이 다가갈 수 있을 것으로 보인다. 화성 탐사선 큐리오시티와 퍼시비어런스 로버는 화성 남반구에서 멀리 떨어진 곳을 탐사하고 있다. 이 지역에는 아직 어떤 우주선도 착륙한 적이 없다. 2007년 8월 발사돼 2008년 5월 25일 화성 북반구에 착륙한 피닉스 우주선은 극심한 추위와 제한된 햇빛으로 같은해 11월 10일 임무가 종료됐다. 피닉스 탐사선은 물과 생명체를 탐사하는 두 가지 목표를 가졌지만 화성의 극한의 기온을 견디지 못했다.
-
- IT/바이오
-
화성 '거미' 지형, NASA 실험실서 최초 재현 성공
-
-
[신소재 신기술(106)] 스탠퍼드대, 식용 색소로 투명 쥐 만드는 기술 개발 성공
- 미국 과학자들이 식용 색소를 이용해 생쥐 피부를 투명하게 만드는 실험에 성공했다. 스탠퍼드대 재료과학 및 공학 궈쑹 홍(Guosong Hong) 교수 팀은 9월 5일 과학 저널 '사이언스(Science)'에서 '타르트라진(Tartrazine)' 또는 '황색 5호(FD&C Yellow #5)'로 알려진 노란색 식용 색소를 통해 생쥐의 복부 피부와 두개골 등 생물학적 조직을 일시적으로 투명하게 만드는 데 성공했다고 밝혔다. 투명망토는 공상 과학과 판타지 영화의 소재로 곧잘 등장하지만, 식용 염료를 활용해 쥐의 피부를 투명하게 만들어 낸 것은 이번이 처음이다. 여기서 '투명'이라는 개념은 좀 다르다. 일반적으로 투명망토는 인체의 내부까지 투명해져서 육안으로 사람이 안 보이는 것을 의미한다. 하지만 연구팀이 개발한 식용 염료를 바르면 피부만 투명해지고 그안의 혈관과 근육, 뼈 등 내부 구조가 고스란히 드러나 관찰하기에 적합해진다. 연구팀은 특정 탄산음료와 과자에 독특한 주황색을 부여하는 식용 색소인 황색 5호를 사용해 쥐의 피부를 완전히 투명하게 하는 것을 입증했다. 이는 가역적이고 잠재적으로 무독성인 연구 방법으로, 의학과 과학 영상 분야에 혁신을 가져올 수 있다. 해당 연구 내용에 대해서는 영국 일간지 가디언과 과학 전문매체 퍼퓰러사이언스 등 다수 외신이 전했다. 지금까지 연구팀은 이 새로운 발견을 통해 쥐의 복부 내 장기를 관찰하고, 설치류 두개골 주변의 맥동하는 혈류를 살펴보고, 현미경을 통해 근육 조직을 매우 선명하게 볼 수 있었다. 추가적인 연구를 통해 이 방법은 새로운 과학적 발견을 촉진하고, 현미경 기술을 발전시키며, 의료 진단 전략과 치료법을 개선하는데 기여할 수 있을 것으로 기대된다. 원리는 간단, 색소 바르면 피부 투명해져 쥐의 피부를 투명하게 하는 방법은 간단하다. 황색 5호 용액을 쥐의 피부에 몇 분 동안 마사지하거나 미세 바늘을 사용하면 투명('가시광선의 적색 영역에서 완전한 광학적 투명성')한 피부가 된다. 색소를 씻어내면 피부는 자연스럽고 불투명한 상태로 되돌아간다. 스탠포드 대학교의 공동수석연구 저자이자 생물공학자인 궈쑹 홍 박사는 "피부와 같은 생물학적 조직은 빛이 통과할 때 산란되기 때문에 일반적으로 투명하지 않다"며 "동물의 살은 주로 물과 지방 등 다양한 물질로 이루어진 매트릭스이며, 이 두 종류의 화합물은 서로 다른 각도로 빛을 굴절시킨다고 설명했다. 빛은 한 물질에서 다른 물질로 이동할 때 속도가 변하며 휘어지는 굴절과 흩어지는 산란 현상을 일으킨다. 우리가 물체의 속을 볼 수 없는 것은 바로 산란현상 때문이다. 연구팀은 다양한 색소가 조직 내 빛의 이동 방식을 어떻게 변화시키는 지 모델링하여 일시적으로 피부를 투명하게 하는 이 방법을 개발했다. 팀은 황색 5호와 다른 몇 가지 색소를 투명성 향상 후보로 선정한 후, 실리카 입자와 혼합된 액체, 살아있는 닭의 가슴살, 살아 있는 생쥐와 기타 쥐의 조직 샘플 등을 테스트해 색소가 얼마나 빠르고 깊게 퍼지는 지 측정했다. 또한 이 색소를 다른 광학 현미경 기술과 결합해 황색 5호가 기존 기술을 향상시키는데 사용될 수 있음을 보여줬다. 마지막으로 연구팀은 설치류 실험 대상에서 단기 및 장기적인 영향을 조사하고 쥐가 소변과 대변을 통해 이들 색소를 얼마나 빨리 배출하는 지 추적해 초기 독성 분석을 수행했다. 연구팀은 황색 5호가 24시간 내에 몸을 통과하고 염증이나 자극을 거의 일으키지 않으며 "최소한의 전신 독성"을 나타낸다고 밝혔다. 인체 적용 시기 상조 그러나 이 방법은 아직 완전하지 않다. 예를 들어 살아 있는 생쥐 몸통 전체를 투명하게 만들거나 인간 복부의 내부를 즉시 볼 수 있게 해주지는 못한다. 황색 5호는 조직에 제한적으로 침투할 수 있기 때문에, 표적 전달력과 최적 농도에 대한 정확한 이해 없이는 인간의 살과 같은 덜 투과적인 피부를 통해 내부의 이미지를 얻는 데 유용하지 않을 수 있다. 또한 색소가 광자 산란을 줄이지만 완전히 제거하지는 못한다. 사용되는 조직이 두꺼울수록 이미지는 더 어둡고 선명도가 떨어진다. 게다가 초기 독성 평가는 긍정적이지만, 황색 5호 색소가 장기적으로도 무해하다고 확신할 수 없다. 이는 추가 연구를 통해 풀어야할 과제다. 이에 홍 교수는 추가적인 안정성 연구가 필요하다고 강조하며 "인체 피부에 이를 시도하는 것은 권장하지 않는다. 특히 국소적으로 적용될 때 색소 분자의 인체 독성은 완전히 평가되지 않았다"고 강조했다. 향후 추가 연구를 통해 황색 5호가 인체에 국소적으로 안전하게 사용될 수 있다면 피부암 조기 발견, 혈관을 찾기 어려운 사람들의 혈액 채취 용이성, 레이저 문신 제거 속도 향상, 광열 암 치료 효과 증대 등 다양한 분야에서 활용될 것으로 전망된다.
-
- IT/바이오
-
[신소재 신기술(106)] 스탠퍼드대, 식용 색소로 투명 쥐 만드는 기술 개발 성공
-
-
[신소재 신기술(104)] 빛으로 암 쫓는다⋯새 광기반 기술, 전립선암 조기 발견 정확도 90%
- 영국에서 빛을 활용해 전립선암을 90%의 정확도로 조기 진단하는 기술이 개발됐다. 의학 전문매체 메디컬 익스프레스는 2일(현지시간) 영국 애스턴 대학교 연구팀이 새로운 광기반 기술로 암을 더 빠르고, 저렴하며, 덜 고통스럽게 진단할 수 있는 기술 개발의 첫 걸음을 내디뎠다며 이같이 보도했다. 애스턴대 광기술연구소의 이고르 메글린스키 교수 연구 팀은 빛을 기반으로 탈수된 혈액 내 결정체를 분석하는 새로운 방법을 개발했다. 이 연구는 「3D 뮬러 매트릭스 이미징 접근법을 사용한 혈액막의 다결정 미세구조에 대한 통찰력」이라는 제목의 논문으로 '사이언티픽 리포트(Scientific Reports)' 저널에 게재됐다. 메글린스키 교수는 새로운 편광 기반 이미지 재구성 기술을 사용해 건조 혈액 샘플의 다결정 구조를 분석했다. 암 초기 단계에 단백질 모양 변화 연구팀은 건강한 지원자, 전립선암 환자, 공격적인 암세포를 가진 환자 등 세 그룹으로 나뉜 크기가 동일한 그룹에서 108개의 혈액 도말 샘플을 분석했다. 암과 같은 질병 초기 단계에서는 혈액 내 단백질의 모양과 결합 방식이 변화하는데, 연구팀은 이러한 단백질의 3차 구조 또는 고유한 3D 모양의 변화와 4차 구조(여러 단백질이 결합되는 방식) 변화를 이용해 세포를 감지하고 분류했다. 이 기술을 통해 팀은 건조 혈액 도말 표본을 상세하게 분석해 건강한 표본과 암 표본 간의 중요한 차이를 식별할 수 있었다. 메글린스키 교수는 "이번 연구는 액체 생검 분야에 획기적인 기술을 도입해 비침습적이고 신뢰할 수 있으며 효율적인 진단 방법을 위한 노력에 부합한다"고 말했다. 이 연구 결과는 조기 진단 및 암 분류 모두에서 90%의 정확도를 보였다. 이는 기존 스크리닝 검사 방법보다 훨씬 높은 수치이다. 또한 조직 생검보다 혈액 샘플을 사용하기 때문에 환자에게 덜 침습적이고 위험성이 낮다. 메글린스키는 "이러한 높은 정확도와 비침습적인 특성은 액체 생검 기술의 중요한 발전을 의미한다"며 "암 진단, 조기 발견, 환자 분류, 모니터링 분야에 혁신을 가져와 종양학 분야와 환자 치료를 크게 개선할 수 있는 잠재력을 가지고 있다"고 기대했다.
-
- IT/바이오
-
[신소재 신기술(104)] 빛으로 암 쫓는다⋯새 광기반 기술, 전립선암 조기 발견 정확도 90%