검색
-
-
JN.1 변종, 코로나19 판도 전환
- 2023년 후반 발견된 코로나19 변종 JN.1은 바이러스 진화에 중요한 변곡점을 맞이했다. 이 변종의 등장은 지속적인 글로벌 보건 노력의 중요성을 더욱 강조하고 있다. JN.1 변종은 2023년 8월 처음 발견된 이후 호주를 비롯한 전 세계적으로 급속히 확산됐다. 최근 1년 동안 대부분의 국가에서 관찰된 가장 큰 코로나19 확산의 주범으로 지목되고 있다. 과학기술 전문 매체 사이테크데일리(SciTechDaily)는 세계보건기구(WHO)가 2023년 12월 JN.1을 '관심 변이체'로 분류했고, 1월에는 장기적인 건강 결과를 초래할 우려가 있는 "훨씬 많은" 예방 가능한 질병을 유발하는 지속적인 세계적인 건강 위협이라고 강력하게 언급했다고 전했다. JN.1은 병원체로서 놀랍게도 새로운 버전의 사스-CoV-2(코로나를 일으키는 바이러스)이고 다른 순환 균주(오미크론 XBB)를 빠르게 대체하고 있다. 또한 코로나바이러스의 진화에 대해 언급하고 있기 때문에 중요하다. 일반적으로 사스-CoV-2 변이체는 이전에 있었던 것과 매우 비슷해 보이며, 한 번에 몇 개의 변이만 축적되어 바이러스가 부모보다 의미 있는 이점을 제공한다. 그러나, 2년 전 오미크론(B.1.1.529)이 발생했을 때와 같이, 때때로, 이전에 있었던 것과 현저하게 다른 특징들을 가진, 겉보기에는 변형들이 출현한다. 이것은 질병과 전염에 중대한 영향을 미친다. 지금까지, 특히 꾸준히 진화하는 오미크론 변종의 지속적인 성공을 고려할 때, 이러한 "단계 변화" 진화가 다시 일어날 것이라는 것은 확실하지 않았다. JN.1은 매우 독특하고 새로운 감염의 물결을 일으키기 때문에 많은 사람들이 WHO가 JN.1을 자체 그리스 문자에 대한 다음 우려의 변종으로 인정할지 궁금해하고 있다. 어쨌든 JN.1을 통해 우리는 팬데믹의 새로운 단계에 진입했다. JN.1의 기원은? JN.1(또는 BA.2.86.1.1) 이야기는 2023년 중반경 모 계통 BA.2.86의 출현으로 시작되며, 이는 2022년 오미크론 하위 변종 BA.2에서 유래했다. 몇 달 동안 해결되지 않은 채 지속될 수 있는 만성 감염은 이러한 단계적 변화 변이체의 출현에 한 역할을 할 가능성이 높다. 만성적으로 감염된 사람들에게서 바이러스는 조용히 테스트를 하고 결국 면역을 피하고 그 사람에게서 생존하는 데 도움이 되는 많은 돌연변이를 보유한다. BA.2.86의 경우 스파이크 단백질(SARS-CoV-2 표면에 있는 단백질이 우리 세포에 부착되도록 한다)의 돌연변이가 30개 이상 발생했다. 전 세계적으로 발생하는 엄청난 양의 감염은 바이러스의 대규모 진화를 예고하고 있다. 사스-CoV-2의 변이율은 매우 높기 때문에 JN.1 자체도 이미 변이가 빠르게 진행되고 있다. JN.1와 다른 변종의 차이점 BA.2.86과 현재 JN.1은 두 가지 측면에서 실험실 연구에서 독특하게 보이는 방식으로 행동하고 있다. 첫 번째는 바이러스가 면역을 어떻게 회피하는지에 관한 것이다. JN.1은 스파이크 단백질에서 30개 이상의 돌연변이를 물려받았다. 또한 항체가 바이러스에 결합하고 감염을 예방하는 능력(면역 체계의 보호 반응의 한 부분)을 더욱 감소시키는 새로운 돌연변이 L455S를 얻었다. 두 번째는 JN.1이 우리 세포에 들어가 복제하는 방식에 대한 변화를 포함한다는 것이다. 미국과 유럽의 최근 세간의 이목을 끄는 실험실 기반 연구에서는 분자 세부 사항을 자세히 설명하지 않고 BA.2.86이 델타와 같은 마이크로미크론 이전 변이체와 유사한 방식으로 폐에서 세포로 들어가는 것을 관찰했다. 그러나 이와는 대조적으로 호주의 커비 연구소가 다른 기술을 사용한 예비 연구에서는 오미크론 계통과 더 잘 일치하는 복제 특성을 발견했다. 이러한 다양한 세포 진입 결과를 해결하기 위한 추가 연구는 바이러스가 질병의 심각성과 전염에 영향을 미칠 수 있는 체내 복제를 선호할 수 있는 위치에 영향을 미치기 때문에 중요하다. 이런 연구 결과들은 JN.1 그리고 일반적으로 SARS-CoV-2가 우리의 면역체계를 돌아다닐 수 있을 뿐만 아니라, 세포를 감염시키고 효과적으로 전염시킬 수 있는 새로운 방법들을 발견하고 있다는 것을 보여준다. 우리는 이것이 사람들에게 어떻게 작용하는지, 그리고 그것이 임상 결과에 어떻게 영향을 미치는지에 대해 더 연구할 필요가 있다. JN.1의 면역 회피 기능과 결합된 BA.2.86의 단계적 변화 진화는 이 바이러스에 2023년에 직면한 XBB.1 기반 계통을 훨씬 뛰어넘는 글로벌 성장 이점을 제공했다. 이러한 특징에도 불구하고 우리의 적응 면역 체계가 여전히 BA.286과 JN.1을 효과적으로 인식하고 반응할 수 있다는 증거가 있다. 업데이트된 1가 백신, 테스트 및 치료법은 JN.1에 대해 여전히 효과적이다. '심각도'에는 두 가지 요소가 있다. 첫째는 더 '본질적으로' 심각한 경우(면역력이 없는 감염으로 인해 질병이 더욱 악화됨), 두번 째는 바이러스가 전염성이 더 강해 단순히 감염시키기 때문에 더 큰 질병과 사망을 초래하는 경우다. JN.1은 후자에 속한다. 다음은 어떤 바이러스가 퍼질까? 현재 JN.1 변종이 '차세대 일반 감기'로 진화하는 진화적 궤도에 있는지, 그 진화 과정이 얼마나 걸릴지는 불확하다. 과거 네 가지 역사적인 코로나바이러스의 진화 궤적을 분석함으로써 미래 방향을 어느 정도 예측할 수 있지만, 이는 단순히 하나의 가능성에 불과하다. 우리는 비상사태 이후 새로운 팬데믹 단계에 진입했다. 하지만 코로나 바이러스는 여전히 전 세계적으로 피해를 입히는 주요 전염병으로 남아 있다. 사회적 및 개인적 차원에서 새로운 감염 물결에 대한 위험성을 인지해야 한다. 개인 보호와 주변 사람들 보호를 위한 적극적인 조치가 필요하다. 새로운 위협에 대한 팬데믹 대비를 개선하고 현재의 위기에 대한 대응을 개선하기 위해서는 글로벌 감시를 지속하는 것이 중요하다. 또 저소득 및 중소득 국가는 우려할 만한 사각지대라는 것도 고려해야 할 상황이다. 코로나19는 지난 2019년 11월 중국 후베이성 우한시에서 처음으로 발생하여 보고된 새로운 유형의 변종 코로나바이러스인 SARS-CoV-2에 의해 발병한 급성 호흡기 전염병이다. 2019년 11월부터 중국에서 최초 보고되고 퍼지기 시작해 현재까지 전 세계에서 지속되고 있는 범유행전염병이자 사람과 동물 모두 감염되는 인수공통전염병이다. 또한 제1급 감염병 신종감염병 증후군의 법정 감염병이었다.
-
- IT/바이오
-
JN.1 변종, 코로나19 판도 전환
-
-
일본, 달 착륙 도전...'핀포인트 착륙' 성공할까?
- 일본의 달 탐사선 '슬림(SLIM, 달 탐사 스마트 랜더)'이 최초의 달 착륙을 불과 8시간 앞두고 있다. 19일 일본 매체 니케이 보도에 따르면, 일본 우주항공연구개발기구(JAXA)의 소형 탐사선 '슬림'은 20일 오전 0시 무렵 달에 착륙 강하를 시작할 예정이다. 이 탐사선은 목표 지점에 대한 오차범위를 100미터 이내로 줄이는 정확한 '핀포인트 착륙'을 목표로 하고 있다. 슬림은 2023년 9월 7일 일본의 대형 로켓 'H2A'를 통해 다네가시마 우주센터에서 발사되었으며, 이후 약 38만km 떨어진 달로의 여정을 시작했다.이후 작년 10월 지구 궤도를 벗어나 달로 향하기 시작했고, 작년 12월 25일 달 궤도에 진입했다. 이번 착륙 시도가 성공한다면 일본 달 탐사선으로는 첫 착륙으로, 일본의 달 탐사 역량 강화에 크게 기여할 것으로 기대된다. 이 로켓은 600km의 계획된 고도에 근접하고 있으며, 1월 19일 오후 10시 40분에는 약 15km까지 낮춰 최종 준비 단계에 들어간다. 달 착륙은 20일 오전 0시 20분로 예정되어 있다. 20일 오전 0시 현재 슬림은 시속 약 6400km로 제트기보다 몇 배 빠른 속도로 항행할 예정이다. 엔진의 역분사로 속도를 줄여 20분 후 착륙 목표 지점인 약 800km 떨어진 곳으로 항행한다. 일본 지역으로 비유하면 히로시마현 상공에서 감속을 시작해 도쿄돔 지붕에 딱 떨어지는 정확도가 요구된다. 착륙 마지막 단계의 이 과정은 매우 정밀하며, JAXA 기술진은 이를 '마의 20분'이라고 부른다. 이 시간 동안 슬림은 자동으로 항행하여 목표 지점에 도달하게 된다. 고정밀 착륙을 위해서는 지상에서 판단하는 것만으로는 제어를 따라잡을 수 없기 때문이다. 일본이 2007년 발사한 달 궤도 위성 '카구야'가 제공한 달 표면의 고정밀 지도가 슬림 착륙에 도움이 되는 것으로 알려졌다. 슬림은 지도와 카메라로 촬영한 달 표면 이미지를 대조해 자신의 세부 위치를 파악하고 자세와 속도를 조정한다. 목표 지점 바로 위에서는 기체 자세를 수직으로 가깝게 하고, 도중에 장애물인 암석 등이 있으면 수평으로 움직여 회피할 수 있다. 착륙 직전, JAXA는 세계적으로 드문 두 대의 소형 로봇 '레브1'과 '레브2'(통칭 SORA-Q=소라큐)를 발사할 예정이다. 스프링이 장착된 '레브1'은 중앙대, 도쿄농공대와 공동 개발한 약 2kg 무게의 로봇으로, 달 표면에 착륙한 후 반동을 이용해 튀어 오르며 이동한다. '레브2'는 다카라토미와 공동 개발한 야구공 크기의 로봇으로, 중앙에 카메라를 장착하고 바퀴가 달린 외피로 주행한다. 이 로봇들은 슬림과 달 표면의 영상을 촬영하여 데이터 중계 역할을 하는 '레브1'을 통해 지상으로 전송한다. 이들 로봇의 기술은 향후 달 지하 탐사나 경사진 지형 탐사에 유용하게 활용될 수 있다. 레브1에서 쌓은 기술을 활용하면 향후 달 지하에 있는 동굴로 방출해 뛰어다니며 탐사할 수 있다. 레브2의 기술은 가파른 경사가 있는 달 분화구를 오르내리는 등 일반 탐사 차량이 진입하기 어려운 곳을 탐사하는 데 도움이 될 수 있다. 두 로봇이 이번에 계획대로 움직일 수 있을지 주목된다. 슬림, 달 지면에 비스듬히 착륙 슬림의 착륙 방식은 독특하다. 전통적인 수직 착륙 방식이 아닌, 스스로 쓰러지면서 착륙하는 방법을 채택하고 있다. 이 방식은 험준한 절벽이나 경사면에서도 안전한 착륙을 가능하게 한다. 착륙 지점은 '시오리'라 불리는 분화구 근처로, 여기서 탐사선은 적외선 카메라를 사용해 달의 맨틀 성분을 관측하며 지구와의 차이점을 연구할 계획이다. 달이 탄생한 기원과 달과 지구와의 관계에 대한 데이터를 확보하는 것이 목표다. 이번 임무가 성공한다면 일본은 달 탐사 경쟁에 중요한 이정표를 세우게 된다. 과거 냉전 시대에 미국과 소련이 주도했던 달 탐사는 이제 전 세계적인 경쟁으로 확대되고 있다. 미국은 아폴로 프로그램을 통해 여러 차례 유인 달 착륙을 성공적으로 수행했다. 최초의 달 탐사 성공 국가인 미국은 무인 탐사선을 여러 차례 달에 착륙시켰다. 러시아는 작년 8월 달 탐사선을 쏘아올렸으나 착륙에 실패했다. 러시아는 1976년 달 탐사선인 루나 24 이후 47년 동안 어떤 우주선도 달 궤도에 재진입하지 못했다. 현재 달 탐사 분야를 주도하는 중국은 2013년 미국과 소련에 이어 세 번째로 달 착륙에 성공한 국가로, 지금까지 3회의 연속 착륙 성공을 기록했다. 중국은 창어 프로그램을 통해 무인 탐사선을 달에 착륙시켰으며, 유인 달 착륙을 계획하고 있다. 인도는 무인 탐사선 '찬드라얀' 프로그램을 통해 달 탐사를 시도하하고 있다. 작년 8월 달 탐사선 찬드라얀 3호가 달 남극에 무사히 착륙했다. 중국에 대항하기 위해 미국은 현재 아폴로 계획 이후 유인 달 착륙을 목표로 하는 '아르테미스 계획'을 세웠고, 일본도 참여한다. 미국과 중국은 달에서 채굴한 물과 광물 등 자원을 활용해 거주 가능한 달 기지 건설을 구상하고 있다. 한편, JAXA는 20일 새벽 슬림의 달 착륙 결과를 판단해 발표할 예정이다. 성공하면 약 1~2주 후 카메라와 로봇으로 촬영한 달의 이미지를 공개한다. 핀포인트 착륙의 성패를 알 수 있는 것은 약 한 달 후가 될 전망이다.
-
- 산업
-
일본, 달 착륙 도전...'핀포인트 착륙' 성공할까?
-
-
[퓨처 Eyes(18)] 지구 온난화, 폭주 온실 효과로 '금성化' 위기⋯시뮬레이션 결과 '지옥 방불'
- 기후 변화로 인한 폭주 온실 효과로 지구가 금성화 위기에 처했다는 연구 결과가 나왔다. 제네바대학교(UNIGE)의 천문학자 연구팀은 파리와 보르도의 프랑스 국립과학연구소(CNRS)의 지원을 받아 온실효과 폭주의 모든 단계를 시뮬레이션 한 최초의 연구 결과를 발표했다고 과학 매체 '사이언스얼랏'이 최근 보도했다. 연구원들은 처음으로 온실 효과의 모든 단계를 시뮬레이션하여 앞으로 몇 세기 안에 우리의 녹색 행성을 사람이 살 수 없는 '지옥'으로 만들 수 있다는 사실을 발견했다. 미국 우주항공국(NASA)에 따르면 지구는 폭주 온난화를 촉진하기 위해 수십도만 가열하면 평균 표면 온도가 섭씨 464도(화씨 867도)인 금성만큼 살기 어려운 행성이 될 것이라고 한다. 온실 효과는 지구 대기의 특정 가스가 태양의 열을 가두는 과정을 말한다. 폭주 온실 효과란? 일부 온실 가스는 수증기처럼 자연적으로 발생한다. 이산화탄소와 같은 다른 온실가스는 인간이 석탄, 석유, 가스 등 오염 물질인 화석 연료를 태울 때 생성될 수도 있다. UNIGE-CNRS 연구에서 조사된 폭주 온실 효과는 태양 조사가 증가하여 지구의 온도가 눈덩이처럼 급격하게 상승할 때 발생한다. 천문학자들은 성명에서 "이 과정의 초기 단계부터 대기 구조와 구름의 범위가 크게 변화하여 거의 멈출 수 없고 되돌리기 매우 복잡한 폭주 온실 효과를 초래한다"라고 말했다. 돌이킬 수 없는 기후 변화 이 연구는 부분적으로 다른 행성, 특히 소위 외계 행성의 기후를 연구하는 도구를 제공하기 위해 설계됐다. 또한 앞으로 수 세기 동안 지구 기후에 미칠 위험에 대한 통찰력도 제공한다. 연구진은 바다와 생명체로 뒤덮인 멋진 파란색과 녹색 점인 지구와 태양계에서 가장 뜨거운 무균 상태의 유황 행성인 금성의 차이점을 강조했다. 그러나 천문학 및 천체물리학 리뷰에 게재된 이 연구에 따르면 "지구 온도를 수십도만 상승시키는 아주 작은 태양 복사량 증가만으로도 지구에서 돌이킬 수 없는 폭주 과정을 촉발하고 지구를 금성처럼 살기 힘든 곳으로 만들 수 있다"는 사실이 밝혀졌다. 온실 효과의 폭주라는 개념은 새로운 것이 아니다. 이 개념은 지구와 같은 온대 상태에서 표면 온도가 섭씨 1000℃(화씨 1832℃)가 넘는 행성으로 진화하는 것을 상상한다. 연구진은 온실 효과가 없다면 지구의 평균 기온은 영하로 떨어지고 지구는 생명체에 적대적인 얼음으로 덮인 공이 될 것이라고 지적하면서 어느 정도의 온실 효과는 유용하다고 말했다. 그러나 이 효과가 너무 크면 해양의 증발이 증가하여 대기 중 천연 온실가스인 수증기의 양이 증가하여 구조 담요처럼 열에 갇히게 된다. 임계값 전 UNIGE 박사후 연구원이며 이 연구의 수석 저자인 기욤 샤베로(Guillaume Chaverot)는 "이 정도의 수증기에는 지구가 더 이상 식을 수 없는 임계점이 있다"라고 말했다. 샤베로는 "거기서부터 바다가 완전히 증발하고 온도가 수백도에 도달할 때까지 모든 것이 사라진다"라고 설명했다. 이전의 시뮬레이션은 폭주 효과가 시작되기 전의 온화한 상태나 폭주 후의 사람이 살 수 없는 상태에만 초점을 맞췄지만, 연구진은 전체 과정을 시뮬레이션 한 것은 이번이 처음이라고 말했다. 전체 과정을 보여줌으로써 처음부터 높은 대기에서 폭주 효과를 증가시키고 그 과정을 되돌릴 수 없게 만드는 매우 특이하고 밀도가 높은 구름 패턴이 어떻게 나타나는지 설명할 수 있었다. 차베로는 "대기의 구조가 크게 바뀌었다"고 했다. 그는 현재 인간이 배출하는 온실 가스가 태양 광도의 약간의 증가와 동일한 폭주 과정을 유발할 수 있는지 여부를 조사하고 있다고 성명을 통해 밝혔다. 기후 과학자들은 지구의 평균 기온이 산업화 이전 수준보다 1.5°C 이상 상승하면 통제할 수 없는 기후 변화를 촉발할 위험이 있다고 경고했다. 이는 온실 폭주 과정과는 다르지만, 연구자들은 지구가 '종말 시나리오'에서 멀지 않았다고 경고했다. 한편, 3일 기상청 기상자료개방포털 자료에 따르면 지난해 한국의 전국 평균기온은 13.7℃를 기록, 전국에 기상관측망이 대폭 확충돼 각종 기상기록의 기준으로 삼는 시점인 1973년 이후 가장 높았다. 지난해 제주도의 평균기온은 역대 두 번째로 높았던 것으로 나타났다. 제주도의 연평균 최고기온은 20.4℃로, 2021년(20.6℃)에 이어 두 번째로 높았다. 게다가 지난 12월 공개된 해양기후예측센터의 자료에 따르면 지난 8월 동아시아 해역의 해면 수온은 평년보다 0.9℃높아 역대 2위를 기록했으며, 전 지구 해역의 해면 수온은 평년보다 0.6℃높아 역대 최고치였다. 올해 전 지구 표면온도가 사상 최고치를 기록할 것이라는 전망은 이젠 '기정사실'로 받아들여지고 있다. 엘니뇨는 적도 부근 동태평양 해수면 온도가 비정상적으로 상승하는 현상으로, 지구의 평균 온도를 높이며 폭풍우, 가뭄 등의 기상 이변을 유발한다. 엘리뇨는 2월께 최고조에 이르며 6개월은 더 갈 것이라는 예측이다.
-
- 포커스온
-
[퓨처 Eyes(18)] 지구 온난화, 폭주 온실 효과로 '금성化' 위기⋯시뮬레이션 결과 '지옥 방불'
-
-
맥주의 두 종류, 에일과 라거 차이점은?
- 연말이 다가오면서 송년회와 같은 모임에서 맥주를 즐기는 사람들이 늘고 있다. 맥주는 다양한 종류와 맛을 자랑하며, 취향에 맞게 선택할 수 있는 폭이 넓다는 점에서 인기를 얻고 있다. 또한, 맥주는 가격이 비교적 저렴해 부담 없이 즐길 수 있어 많은 이들에게 사랑받고 있다. 남성 전문지 더 메뉴얼(THE MANUAL)에 따르면, 맥주는 주로 발효 방식에 따라 에일(ale)과 라거(lager)로 구분된다. 이 발효 방식은 맥주의 맛과 풍미에 중요한 영향을 미친다. 상면발효맥주(上面醱酵麥酒)라고도 하는 에일은 상온에 가까운 15~25℃의 온도에서 상면 발효 효모를 사용하는 반면, 라거는 좀 더 낮은 7~15℃에서 하면 발효 효모를 사용한다. 이러한 차이는 에일과 라거 각각의 독특한 특성과 맛을 만들어낸다. 에일은 높은 온도에서 발효되기 때문에 라거에 비해 더 많은 에스테르를 생성한다. 에스테르는 과일과 같은 풍미를 내는 화합물로, 이로 인해 에일은 라거보다 일반적으로 더 밝고 과일 향이 나는 특징적인 풍미를 가진다. 반면, 라거는 에일에 비해 발효 시간이 더 오래 걸린다. 에일은 보통 2~3주 만에 발효가 완료되는 것에 비해 라거는 발효에 4~6주가 소요된다. 이처럼 발효 시간이 길어지면 맥주의 맛을 더 부드럽고 균형잡힌 풍미를 만들어 준다. 라거의 경우 상대적으로 에일보다 더 맑은 특성을 가지는데, 이는 종종 콜드 컨디셔닝 과정을 거치기 때문이다. 콜드 컨디셔닝은 발효가 완료된 맥주를 저온에서 숙성시키는 과정으로 맥주의 탁한 성분을 제거하는 과정으로, 라거의 맑고 깨끗한 외관을 만들어낸다. 이처럼 발효 방식과 과정의 차이는 에일과 라거 각각의 독특한 맛과 특성을 만들어내며, 맥주 애호가들에게 다양한 선택의 폭을 제공한다. 대표적인 에일과 라거 종류 에일은 다양한 스타일과 맛을 가진 맥주로, 대표적인 종류에는 IPA(인디아 페일 에일), 스타우트, 포터, 고스, 사워 에일, 밀 맥주 등이 있다. IPA는 홉의 강한 풍미와 쓴맛이 특징인 맥주이며, 스타우트는 짙은 색과 깊은 풍미로 잘 알려져 있다. 포터는 스타우트보다 색이 밝고 쓴맛이 덜하며, 고스는 말린 과일이나 허브를 첨가해 독특한 맛을 낸다. 사워 에일은 발효 과정에서 생성되는 젖산 덕분에 신맛이 나고, 밀 맥주는 밀을 사용하여 부드럽고 약간 달콤한 맛이 난다. 라거의 대표적인 종류로는 필스너, 헬레스(Helles) 라거, 멕시코 라거, 쾰쉬(Kölsch) 스타일 맥주, 비엔나 라거 등이 있다. 라거는 또 다른 인기 있는 맥주 종류로, 필스너, 헬레스(Helles) 라거, 멕시코 라거, 쾰쉬(Kölsch) 스타일 맥주, 비엔나 라거 등이 대표적이다. 이들 라거는 발효 과정과 숙성 기간의 차이로 인해 각기 다른 풍미와 특성을 지니고 있다. 필스너는 1842년 체코에서 처음 양조된 맥주로, 맑은 황금색과 깔끔한 맛이 특징이다. 헬레스 라거는 필스너보다 색이 더 밝고 풍미가 더 가볍다. 멕시코 라거는 옥수수가 함유된 맥주로, 상쾌한 맛과 톡 쏘는 탄산이 특징이다. 쾰쉬 스타일 맥주는 독일 코블렌츠 지역에서 유래한 맥주로, 맑은 황금색과 홉의 풍미가 특징이다. 비엔나 라거는 독일 비엔나 지역에서 유래한 맥주로, 붉은빛을 띠는 황금색과 홉의 풍미가 독특하다. 한국, 에일과 라거 양극화 한국의 맥주는 라거가 주류를 이루고 있다. 대표적인 라거 맥주로는 오비맥주의 카스, 하이트진로의 하이트, 롯데칠성음료의 클라우드 등이 있다. 이 맥주들은 모두 맑고 상쾌한 맛을 특징으로 한다. 반면, 에일은 아직까지 소수의 마니아층을 중심으로 사랑받고 있다. 대표적인 에일 맥주로는 제주맥주의 제주 위트, 칭따오, 카프리, 에델바이스 등이 있다. 연말 술자리에서 맥주를 즐길 때는 적당히 마시고, 물을 자주 마셔주는 것이 좋다. 과음은 건강을 해칠 수 있으므로, 주의해야 한다.
-
- 생활경제
-
맥주의 두 종류, 에일과 라거 차이점은?
-
-
호주, 토큰화로 금융 비용 절감 기대…한국도 규제 마련 추진
- 호주중앙은행(Reserve Bank of Australia, RBA)이 디지털 토큰화를 통한 비용 절감 효과에 주목하고 있다. 최근 발표에 따르면, 토큰화 기술의 도입이 호주 금융 시장에서 수십억 달러의 거래 비용을 절감할 수 있는 가능성을 내비쳤다고 채널뉴스아시아가 보도했다. RBA의 브래드 존스 부총재는 토큰화된 자산의 거래가 중개자 없이 이루어질 수 있어 전통적인 금융 시스템보다 경제적이라고 말했다. 특히, 토큰화된 자산은 블록체인과 같은 분산 원장 기술(DLT)을 이용해 보다 효율적인 기록 관리가 가능하다고 덧붙였다. 이러한 변화를 통해 호주 자본 시장은 연간 약 13억 호주달러(약 8억 미국달러)의 거래 비용을 절약할 것으로 전망되며, 이는 금융 시장의 혁신과 효율성 향상에 크게 기여할 것으로 예상된다. RBA는 디지털 토큰화를 통한 비용 절감을 위해 새로운 전략을 세우고 있다. 첫째, 토큰화된 자산의 표준화를 추진하여 상호 운용성을 강화하고, 더 효율적인 거래 환경을 조성할 계획이다. 둘째, 기술 개발 지원을 통해 비용 절감이 가능한 혁신적인 방법을 발굴할 예정이다. 마지막으로, 토큰화된 자산에 대한 적절한 규제 마련을 통해 소비자를 보호하고 시장의 안정성을 확보할 방침이다. 또한, RBA는 중앙 은행 디지털 통화(CBDC) 발행 또는 민간 기업과의 협력을 통한 인프라 구축 등, 토큰 결제 도입에 대한 다양한 방안을 검토 중이다. RBA의 토큰 결제 방식 도입 검토는 호주뿐만 아니라 전 세계 중앙은행들이 토큰화된 자산에 대한 관심을 높이는 가운데 나온 것으로, 토큰화된 자산이 금융 시스템에 미칠 영향에 대한 관심이 더욱 높아질 것으로 예상된다. 한국, 토큰화 시장 성장 전망 한국은 현재 글로벌 암호화폐 시장에서 주목받는 위치에 있다. 2023년 기준으로 한국은 암호화폐 거래소 거래량에서 세계 1위를 기록하며, 토큰화 시장에서도 큰 성장을 이루고 있다. 한국의 토큰화 시장은 주로 암호화폐와 디지털 자산 두 부분으로 구성되어 있다. 암호화폐 시장은 2022년부터 눈에 띄게 성장하였으며, 거래량이 전년 대비 100% 이상 증가하였다고 추산되고 있다. 한편, 디지털 자산 시장은 한국 금융위원회가 디지털자산기본법 제정안을 발표함으로써 더욱 활성화될 것으로 보인다. 이 법안은 암호화폐와 가상 자산을 포함하고 있다. 한국의 토큰화 시장은 초기 단계에 있지만, 암호화폐 시장의 빠른 성장과 새로운 법규의 도입으로 인해, 앞으로 토큰화 시장이 더욱 활발하게 성장할 것으로 예상된다. 호주와 한국의 토큰화 시장 차이점 호주와 한국의 토큰화 시장은 몇 가지 주요한 차이점을 보이고 있다. 호주 정부는 토큰화에 대한 명확한 정책과 지원 방안을 가지고 시장 발전을 적극 돕고 있다. 반면에 한국 정부는 토큰화 시장에 대한 구체적인 정책과 지원 방안을 아직 발표하지 않았다. 호주의 기업들은 토큰화 시장에 대한 높은 관심을 보이며, 다양한 토큰화된 자산 발행과 거래 플랫폼 출시 등의 활동을 하고 있다. 한국의 기업들도 관심을 보이고 있지만, 시장은 아직 초기 단계에 있어 활동은 상대적으로 적다. 한국은 전 세계적으로도 큰 암호화폐 시장을 가지고 있으며, 토큰화 시장 역시 굉장한 규모와 활약을 보이고 있다. 호주는 이 시장에서 상대적으로 초기 단계에 있지만, 빠르게 성장하려는 움직임을 보이고 있다. 향후 전망 호주와 한국의 토큰화 시장은 모두 성장 가능성이 높은 것으로 평가된다. 호주의 경우 정부의 지원과 기업들의 관심으로 인해 향후 더욱 성장할 것으로 예상된다. 한국의 경우 암호화폐 시장의 성장과 새로운 디지털자산기본법 제정안의 도입이 토큰화 시장의 미래 성장을 뒷받침할 것으로 보인다.
-
- 산업
-
호주, 토큰화로 금융 비용 절감 기대…한국도 규제 마련 추진
-
-
도시바, AI로 '포트홀' 감지해 중대 사고 예방
- 비가 쏟아지면 도로 표면에 구멍이 생기는 포트홀(pot hole)은 자칫 중대 사고로 이어질 확률이 높다. 이 포트홀은 일반적으로 사람의 눈으로 직접 확인하고 보수해야 했기 때문에, 많은 시간과 노동력이 소모되어왔다. 그런데 일본의 전기기기 회사 도시바와 도시바 디지털 솔루션즈가 포트홀을 해결할 수 있는 '노면 변화 감지 AI(인공지능)'를 개발해 실용화에 나섰다. 일본 IT전문 매체 지디넷(ZD NET)에 따르면, 도시바와 도시바 디지털 솔루션즈는 NEXCO 중일본과의 협력 하에 고속도로 일상 점검의 효율성을 향상시키기 위한 검증실험을 진행했다. 그 결과, 이 AI 기술은 일상 점검의 자동화와 노동력 절감 뿐만 아니라, 긴급 보수가 필요한 포트홀을 조기에 발견하는 데 큰 효과가 있음이 밝혀졌다. 이로써 고속도로의 유지보수와 장기적인 안정적 운영에도 큰 도움이 될 것으로 기대된다. 지난 2019년 NEXCO 중일본 지역 내의 고속도로에서 약 3200건의 포트홀이 발견됐다. 이 중 30년이 경과한 도로가 전체의 60%를 차지하며, 노면의 변화로 인해 포트홀 발생 빈도가 증가했다. 이로 인해 적시에 이루어지는 점검 및 유지보수가 절실하게 필요한 상황이었다. 기존의 점검 방식은 점검원이 순찰 차량을 이용하여 정기적으로 도로를 순회하며 육안으로 포트홀을 확인하는 방식이었다. 긴급 보수가 필요한 포트홀을 발견할 경우, 점검원은 안전한 정차 지점을 찾은 후, 다시 포트홀이 있는 장소로 돌아와 사진 촬영을 해야 했다. 이후 해당 사진을 도로관제센터에 보고하는 과정을 거쳤다. 도시바 연구개발센터의 미디어 AI 실험실 전문가 노다 레이코 씨는 "노면 변화 감지 AI는 점검원이 탑승한 차량에 설치된 카메라로 이미지를 수집하며, 이 이미지를 AI로 분석한다. 이를 통해 주행 중에도 실시간으로 포트홀을 자동으로 파악하고, 바로 도로관제센터에 보고가 가능하다. 이로써 점검 품질의 일관성과 작업의 안전성이 보장되며, 긴급 보수에 소요되는 시간도 크게 줄일 수 있다"고 말했다. 이번 AI의 눈에 띄는 특징은 '약교사 학습형' 기술이 탑재된 것이다. '약교사 학습형' 기술은 영어로 'Weakly Supervised Learning'이라고도 하며, 머신러닝에서 사용되는 학습 방식 중 하나다. 도시바는 AI가 딥러닝 모델을 통해 입력 이미지에서 비정상 패턴의 스코어 맵을 생성한다고 설명했다. 이 모델은 스코어 맵의 최대값이 입력 이미지의 변화와 일치하도록 학습되어, 정상 이미지와 비정상 이미지 사이의 차이점을 높은 스코어로 표시한다. 이 기술의 도입으로 이미지 분석 시간이 기존 1분 40초에서 단 1초로 줄어들었다. 이로 인해 작업 부담을 줄이고 다양한 도로 환경에서의 적용이 용이해졌다. 향후 두 회사는 NEXCO 중일본과 실증 실험을 진행해 긴급 보수가 필요한 포트홀의 검출 정밀도를 향상시키고 오는 2024년 실용화를 목표로 하고 있다. 2024년 이후로는, 네쿠스코(NEXCO 일본도로공단 후계의 민영기업으로, 동일본, 중일본, 서일본의 3개 회사로 구성)는 각 점검 항목별로 내부에서 AI 모델을 개발할 수 있는 서비스를 제공할 계획이다.
-
- 산업
-
도시바, AI로 '포트홀' 감지해 중대 사고 예방



