검색
-
-
제임스웹 망원경, 은하수 너머 별 탄생 클러스터 관측
- 제임스웹 우주 망원경이 별을 형성하는 복합체의 놀라운 이미지를 공개했다. 미 매체 폭스뉴스는 최근 제임스웹 망원경이 우리 은하계의 위성 은하인 대마젤란 성운(LMC) 내에서 별 형성 복합체 'N79'의 새로운 이미지를 포착했다고 보도했다. 유럽우주국(ESA)에 따르면, N79는 일반적으로 미개척 지역인 LMC에서 약 1630광년에 걸쳐 있는 거대한 별 형성 복합체다. N79는 타란툴라 성운(Tarantula Nebula)으로도 알려진 또 다른 유사한 지역인 30도라두스의 젊은 버전이다. 천문학자들은 N79가 지난 50만 년 동안 30 도라두스보다 훨씬 더 효율적으로 별을 형성할 수 있다고 추정했다. 이번에 공개된 최신 이미지는 일련의 회절 스파이크가 있는 세 개의 거대한 분자 구름 복합체 중 하나를 둘러싼 화려한 별 폭발 패턴을 보여준다. ESA는 이미지에서 눈에 띄는 별 폭발 스파이크는 웹의 18개 기본 거울(미러) 세그먼트가 육각형 대칭을 이루는 결과라고 설명했다. 이 스파이크는 모든 빛이 발산되는 밝고 작은 물체 주변에서 가장 잘 보인다. 제임스웹 망원경의 분할형 거울은 접힌 상태로 발사됐지만 지구에서 100만 마일 떨어진 궤도 지점에 도착한 후 펼쳐졌다. 최근 공개된 이미지는 중적외선 빛이 비추어주는 덕분에, 구름 깊숙이 일어나는 일을 드러내면서 이 영역의 빛나는 가스와 먼지를 보여준다. 제임스웹 망원경은 우리 태양과 같은 별이 태어나는 영역을 들여다보기 위해 설계됐다. 천문학자들이 이 지역에 관심을 갖는 이유는 별 형성이 절정에 달했던 시기의 젊은 우주에 대한 통찰력을 제공하기 때문이다. 제임스웹 망원경은 허블 우주 망원경의 후속작이자 지금까지 우주로 발사된 망원경 중 가장 큰 망원경으로 미 항공우주국(나사·NASA)과 유럽우주국이 공동 프로젝트로 제작했다. 1990년에 지구 저궤도로 발사된 허블 망원경은 천문학 역사상 중요하고 대중에게 인기 있는 망원경이다. 제임스웹의 주거울은 18장의 작은 거울 세그먼트로 구성됐으며, 거울 세그먼트는 금으로 코팅된 베릴륨 재질이다. 세그먼트가 하나로 모인 제임스웹의 주거울은 직경이 6.5미터에 달하여 2.4미터의 허블 우주 망원경의 주거울보다도 크다. 제임스웹은 적외선 천문 관측을 주목적으로 하는 우주 망원경으로 2021년 12월 25일 발사됐다. 웹의 거대한 거울과 절묘한 해상도를 통해 천문학자들은 우주의 다양한 진화 단계에서 N79 영역의 별 형성 관찰을 비교하고 대조할 수 있었다. 제임스웹 망원경이 포착한 N79 이미지는 우주에서 별이 어떻게 형성되는지에 대한 놀라운 통찰력을 제공한다. 이 이미지는 젊은 우주를 연구하고, 별 형성의 과정을 이해하고, 우주의 진화를 연구하는 데 도움이 될 것으로 보인다.
-
- 산업
-
제임스웹 망원경, 은하수 너머 별 탄생 클러스터 관측
-
-
새와 벌의 시각으로 세상을 담는 카메라 개발
- 자연환경 속 동물의 움직임을 기존의 조명 조건에서보다 더욱 빠르고 정교하게 포착할 수 있는 새로운 카메라 시스템이 개발되어 주목받고 있다. 미국의 IT 전문 매체인 아르스테크니카(arstechnica)는 동물이 인식하는 색상을 실시간으로 모션 캡처하며 표현할 수 있는 이 혁신적인 기술에 대해 상세히 보도했다. 이 연구는 생물학회지 '플로스 바이올로지(PLoS Biology)'에 최근 게재됐다. 연구 논문의 공동 저자이자 조지 메이슨 대학교의 생물학자인 다니엘 핸리는 “현대 감각 생태학 기술을 활용함으로써, 우리는 동물이 정적인 장면을 어떻게 인식할 수 있는지를 유추할 수 있게 되었다”고 밝혔다. 핸리 박사는 이어 “하지만 동물들은 움직이는 대상, 예를 들어 음식을 감지하며 중요한 판단을 내리는 경우가 많다”며, 이러한 동적인 상황에서의 동물의 시각을 포착할 수 있는 새로운 하드웨어와 소프트웨어 도구의 중요성을 강조했다. 이 기술은 생태학자와 영화 제작자들에게 동물이 인식하는 색상을 동작으로 포착하고 표현할 수 있는 새로운 방법을 제공한다. 연구팀에 따르면, 다양한 동물 종들은 자신들의 특별한 생태학적 필요성에 맞추어 자외선부터 적외선에 이르기까지 다양한 파장에 민감한 고유한 광수용체를 가지고 있다. 연구팀은 일부 동물들은 편광을 인식하는 능력까지 보유하고 있어, 각 종마다 색상을 다르게 인식하는 특징을 가진다고 설명했다. 꿀벌과 새와 같은 동물은 사람의 눈에는 보이지 않는 자외선에 대해 민감한 반응을 보인다. 인간의 눈과 상업용 카메라들은 이러한 빛의 변화를 포착할 능력이 없어, 많은 시각적 정보가 아직까지도 미개척 상태로 남아 있다. 해당 연구 논문은 현존하는 가시광선 이미지 생성 기술로는 동물이 움직임 속에서 식별하는 색상을 정확히 정량화하기 어렵다고 지적한다. 이는 동물이 색상의 외관과 신호를 통해 주변 환경과 소통하며 탐색하는 과정이 복잡하기 때문이다. 예를 들어, 기존의 분광 광도법은 대상으로부터 반사된 빛을 기반으로 특정 동물의 광수용체가 빛을 어떻게 인지하는지를 유추하는 방식이지만, 이 방법은 시간이 많이 소요되며 공간적, 시간적 정보의 상당 부분을 잃게 된다. 다중 스펙트럼 촬영 기법은 자외선 및 적외선을 포함한 다양한 파장에 걸쳐 여러 장의 사진을 찍어 이를 서로 다른 색상 채널로 합치는 방식으로, 카메라에 독립적인 색상 측정 값을 제공한다. 이 기법은 공간 정보의 정확도를 향상시키기 위해 어느 정도 타협을 하며, 동물의 신호를 연구하는 데 유용하지만 정지한 대상에 대해서만 유효하여 시간에 관한 정보가 결여되어 있다. 연구진은 "동물이 복잡한 형태의 신호를 제공하고 인식하는 과정에서 그림자와 하이라이트의 생성이 한계로 작용한다"며, "이러한 신호는 변화하는 조명 조건과 유리한 관측 지점에 따라 달라지며, 배경, 조명, 그리고 동적 신호 간의 상호작용에 관한 정보는 상당히 제한적이다"라고 지적했다. 그럼에도 불구하고, 이들은 자연 환경에서 생물이 색상을 활용하고 인식하는 방법의 중요한 부분을 이룬다고 말했다. 이에 따라, 연구팀은 자연 환경에서 동물이 식별하는 시각적 신호의 복잡성을 전체적으로 포착할 수 있는 고해상도 동물 관찰 비디오를 생성하는 카메라 시스템 개발에 착수했다. 이들은 기존의 다중 스펙트럼 촬영 기법을 새로운 하드웨어 및 소프트웨어 설계와 통합하여 이를 실현하고자 했다. 이 카메라는 파란색, 녹색, 빨간색, 그리고 자외선(UV)을 포함한 네 가지 색상 채널을 사용해 비디오를 동시에 촬영한다. 이 데이터가 '지각 단위'로 처리될 때, 다양한 동물이 보유한 광수용체에 대한 정보를 바탕으로 이들이 다양한 장면을 어떻게 인식하는지를 보여주는 정확한 비디오를 생성할 수 있다. 이 시스템은 인지된 색상을 92%의 정확도로 식별한다. 카메라는 시장에서 구입할 수 있으며, 관련 소프트웨어는 오픈 소스로 제공되어 누구나 자유롭게 사용하고 개발할 수 있다. 예를 들어, 연구진 중 한 명인 핸리가 자외선 차단제를 바른 상태에서의 실험에서, 그의 밝은 피부는 인간의 눈과 꿀벌의 시각에서 유사하게 보인다. 이는 피부의 반사율이 긴 파장에서 점차 증가하기 때문이다. 사람은 자외선 차단제를 흰색으로 보지만, 자외선을 흡수하는 꿀벌의 눈에는 노란색으로 보인다. 꿀벌의 자외선 광수용체는 자외선 차단제를 바른 부위에서 빛을 거의 감지하지 못하지만, 파란색과 녹색에 민감한 광수용체는 여전히 충분한 빛을 포착한다. 결과적으로 꿀벌의 시각에서는 파란색의 강도가 감소하고, 녹색 및 빨간색 픽셀 값이 증가하여 노란색이 형성된다. 핸리와 그의 연구팀은 새로 개발한 시스템의 정확도가 기존 다중 스펙트럼 사진 기법과 매우 비슷함을 강조하면서도, 특정 신호를 포착하는 데 있어서 기존 방법으로는 어려울 수 있는 부분에서 약간의 정확도 저하가 있을 수 있다는 것을 인정했다. 이는 다중 스펙트럼 사진이 여전히 특정 연구 분야에서 연구자들의 필요를 충족시킬 수 있음을 의미하며, 이 분야에서의 연구는 아직도 많은 가능성을 내포하고 있다. 이러한 정확도의 미세한 절충은 움직이는 동물에서 인식된 색상을 기록하고자 하는 연구자들에게 중요한 가치를 제공한다. 이는 연구자들이 자신들의 데이터 세트의 신뢰도와 특정 사례에 가장 적합한 방법론을 선택하는 데 있어, 정보에 기반한 결정을 내릴 수 있는 기회를 제공한다는 점에서 저자들이 기대하는 부분이다.
-
- 산업
-
새와 벌의 시각으로 세상을 담는 카메라 개발
-
-
식물도 소통한다? 일본 과학자, 영상으로 증명
- 일본 과학자들이 식물들이 서로간에 위험 상황을 경고하는 장면을 촬영하는데 성공했다. 사진=영화 아바타 1 스틸 컷 일본 과학자들은 식물이 잠재적인 위험에 대해 실시간으로 다른 식물에게 알리고 경고하는 현상을 성공적으로 촬영했다. 이는 1980년대 초에 처음 기록된 현상에 대한 중요한 발전이다. 지난 17일 야후에 따르면, 일본 사이타마 대학의 분자생물학자 도요타 마사츠구가 이끄는 연구팀은 식물이 기계적 손상이나 곤충 공격에 반응하여 생성되는 휘발성 유기화합물(VOCs)을 감지하고 근처의 다른 식물에 방어 반응을 보내는 것을 포착했다. 이 연구 결과는 지난해 10월 '네이처 커뮤니케이션즈(Nature Communications)' 저널에 게재됐다. 사이타마 대학의 박사과정 학생인 유리 아라타니(Yuri Aratani)와 박사 후 연구원 타쿠야 우에무라(Takuya Uemura)로 구성된 연구팀은 애기장대(Arabidopsis thaliana) 식물의 의사소통 과정을 성공적으로 연구했다. 이들은 나뭇잎과 애벌레가 들어있는 용기와 겨자과의 흔한 잡초인 애기장대를 담은 다른 방에 공기 펌프를 설치했다. 애기장대는 스트레스 전달자 역할을 하는 칼슘 이온을 감지한 후 세포가 형광 녹색을 띠도록 유전자 변형됐다. 이후 연구팀은 형광 현미경을 사용해 손상되지 않은 식물이 손상된 잎에서 방출된 VOCs에 반응하는 과정을 관찰했다. 이 연구는 식물들이 위협을 감지하고 의사소통하는 방법에 대해 새로운 이해를 제공했다. 식물의 의사소통은 1983년 한 연구에서 처음으로 관찰되었고, 그 이후로 과학계에서 논의에 불을 붙였다. 도요타 마사츠쿠는 최신 연구에 대해 "우리는 마침내 식물이 언제, 어디서, 어떻게 위협을 받는 이웃 식물의 공기 중 '경고 메시지'에 반응하는지에 대한 복잡한 이야기를 밝혀냈다"며 "우리 눈에 보이지 않는 이 미묘한 통신 네트워크는 임박한 위협으로부터 이웃 식물을 적시에 보호하는 데 중추적인 역할을 한다"라고 말했다. 이는 식물 의사소통에 관한 연구에서 중요한 발전을 의미하며, 식물이 위험을 감지하고 정보를 공유하는 방식에 대한 새로운 이해를 제공한다.
-
- 생활경제
-
식물도 소통한다? 일본 과학자, 영상으로 증명
-
-
태양 플레어, 6년 만에 X급 폭발
- 2024년 새해 전날 태양의 플레어 폭발(빛나는 점)로 지구 전력망이 일시적으로 방해받을 수 있다. 사진=NOAA 홈페이지 2024년 새해 전날 발생한 태양의 강력한 에너지 폭발은 2017년 이후 관측된 것 중 가장 큰 태양 플레어를 생성했다. 미국 국립해양대기청(NOAA)은 이러한 태양 플레어의 분출이 심각해 보일 수 있지만, 두려워할 것은 없다고 밝혔다. 미국 매체 USA투데이는 NOAA의 우주 기상 예측 센터(Space Weather Prediction Center)가 최근 태양 표면에 빛나는 점으로 나타난 플레어의 이미지를 공개했다고 최근 보도했다. 문제는 이 플레이어가 고주파 무선 신호를 일시적으로 방해해 지구 전력망에 영향을 미칠 위험이 있다는 지적이다. 나사(NASA)의 태양 역학 관측소(Solar Dynamics Observatory) 또한 거대한 태양 플레어의 이미지를 포착했다. 나사는 플레어가 방출하는 열과 자외선을 극도의 강도를 강조하기 위해 노란색과 주황색으로 채색했다. 우리 태양계의 가장 큰 폭발 사건으로 간주되는 태양 플레어는 흑점과 관련된 자기 에너지가 방출되어 강렬한 방사선 폭발을 일으킬 때 발생한다. 태양 플레어는 강도에 따라 다양하며, 단 몇 분에서 몇 시간까지 지속될 수 있다. 나사는 이러한 강도에 기반해 태양 플레어를 분류하며, B급은 가장 약한 수준이고 최근에 감지된 X급은 가장 강력한 수준이다. 비교적 약한 태양 플레어는 우리 지구에서는 눈에 띄지 않지만, X등급으로 분류되는강력한 에너지를 지닌 플레어는 무선 통신, 전력망, 그리고 항법 신호에 양향을 미칠 수 있는 잠재력을 가지고 있다. 나사에 따르면 X45급 태양 플레어는 극단적인 경우, 우주선과 우주 비행사에게 심각한 위험을 초래할 수도 있다고 한다. 태양 플레어의 강도를 나타내는 'X-5급'과 같은 분류에서, 각 문자는 에너지 출력이 10배 증가함을 나타낸다. 각 등급에는 1부터 9까지의 서브 등급이 포함된다. 하지만 X 등급에서는 X-1 등급의 출력보다 10배 이상 높은 강도를 나타내는 예외적인 경우도 기록된다. 나사에 따르면 가장 강력한 태양 플레어는 지난 2003년에 발생했으며, 이때 측정 센서는 과부하 상태에 이르렀다. 이 플레어는 나중에 X-45급 정도로 추정됐다. 이는 위성에 손상을 줄 뿐만아니라 심지어 극 지방을 비행하는 항공사 승무원에게 소량의 방사선을 노출시키고, 장기간 지속되는 방사선 폭풍을 생성할 수 있는 충분한 강도를 가졌다. X급 플레어는 또한 전 세계적으로 무선 전송 문제를 일으키고, 심지어는 대규모 정전을 초래할 가능성이 있다고 나사는 설명했다. 다행히도 최근에 발생한 태양 플레어는 2003년에 발생한 플레어 강도에는 미치지 못했다. NOAA에 따르면 X-5 등급으로 평가된 이번 태양 플레어는 X 8.2 플레어가 발생한 2017년 9월 10일 이후 관측된 것 중 가장 강력했다. 이 기관은 또한 2023년 12월 14일 남미에서 무선 정전을 초래한 X-2.8 등급의 태양 플레어를 생성한 동일한 태양 지역과 연관 지었다. 태양 플레어와 태양 폭풍과 같은 기타 태양 활동은 태양이 약 11년 주기로 발생하는 태양 최대치에 도달함에 따라 2025년에 더욱 빈번해 질 것으로 예상된다. 태양 플레어 활동이 증가함에 따라 장기간 인터넷 중단이 발생할 경우, 이는 잠재적으로 '인터넷 종말'에 대한 우려를 낳을 수 있다.
-
- 생활경제
-
태양 플레어, 6년 만에 X급 폭발
-
-
나사 주노 탐사선, 목성 위성 '이오' 초근접 비행…화산 활동 원인·패턴 규명 기대
- 미국 항공우주국(NASA·나사)의 주노 우주선이 목성의 위성 이오(Io)에 대한 대담한 초근접 비행을 통해 화산 활동의 원인과 패턴을 탐구할 수 있는 새로운 기회의 문을 열었다고 과학 기술 전문 매체 퓨처리즘이 지난 7일(현지시간) 보도했다. 나사에 따르면 주노 우주선은 지난주 태양계에서 가장 활발한 화산 활동을 보이는 이오에 20년 만에 가장 근접한 비행을 실시했다. 이 과정에서 주노는 이오의 변화무쌍한 표면과 화산 활동의 새로운 이미지를 포착했다. 주노 우주선은 지구 저궤도를 벗어나 이오의 표면에서 약 930마일(약 1497미터) 이내까지 접근했을 가능성이 높은 것으로 알려졌다. 나사는 이번의 드문 초근접 비행을 통해 주노 우주선의 장비가 아주 풍부한 데이터를 축적했을 것으로 기대하고 있다. 주노, 이오 위성 20년 만에 초근접 촬영 이미 주노가 포착한 사진들은 이오의 화산 활동의 실체를 드러내는 데 큰 도움이 될 것으로 보인다. 이 사진들에는 유황으로 덮인 평원과 드문드문 솟아 있는 이오의 산들이 선명하게 포착됐다. 이는 갈릴레이 위성의 노란색과 갈색 색조에 대한 이해를 높이는 데 기여할 것이다. 또한, 목성에서 반사된 햇빛 덕분에 달의 어두운 면도 관찰될 수 있었다. 이번 근접 비행은 태양계 탐사에서 중요한 이정표가 될 것으로 기대된다. 사우스웨스트 연구소의 물리학자이자 주노 탐사선의 수석 연구원인 스콧 볼튼은 최근 뉴욕 타임스와의 인터뷰에서 이오 표면의 다양한 지형을 페퍼로니 피자에 비유하며 "경외감을 느꼈다"고 말했다. 이오, 뜨거운 용암 분출 위성 태양계에서 화산 활동이 가장 활발한 목성의 위성중 하나인 이오는 뜨거운 온도로 유명하다. 천문학자들은 이오의 지각 아래에 마그마의 바다가 존재한다고 믿고 있으며, 주노의 데이터를 통해 이를 확인할 수 있을 것으로 기대하고 있다. 이오의 열은 거대한 조석력에 의해 더욱 증폭되는 것으로 알려져 있다. 이오가 목성과 다른 위성들 사이의 중력적 힘겨루기의 중심에 위치해 마그마를 뒤흔들고, '조석 가열'이라는 현상을 통해 엄청난 마찰열을 생성한다고 한다. 이오는 갈릴레이 위성들과 달리 물이 존재하지 않지만, 그 대신 전혀 다른 형태의 액체인 용암이 흘러내린다. 이 용암의 흐름은 이오의 중요한 특징 중 하나이고, 때때로 수백 개의 화산이 장관을 이루며 분출하는 광경을 연출한다. 이 용암은 이오의 내부(마그마로 추정되는 바다)에서 끊임없이 표면으로 흘러나와 정기적으로 이전에 없던 완전히 새로운 표면을 만들고, 용암 호수로 메운다. 과학자들은 주노를 통해 이러한 화산 현상의 원인과 어떤 패턴이 있는 지를 탐구하고 있다. 볼튼은 비행 완료에 앞서 성명을 통해 "이번 비행에서 얻은 데이터와 이전 관측 자료를 결합하여 주도 과학팀은 이오의 화산이 어떻게 변화하는지 연구하고 있다"고 설명했다. 그는 "우리는 화산이 얼마나 자주 분출하는지, 얼마나 밝고 뜨거운지, 용암 흐름의 모양이 어떻게 변하는 지, 그리고 이오의 활동이 목성 자기권의 하전 입자의 흐름과 어떻게 연결되어 있는지 찾고 있다"고 말했다. 주노 우주선은 오는 2월 3일 목성을 다시 한번 '초근접' 촬영할 예정이다. 이는 7년 넘게 궤도를 돌면서 57번째로 목성을 근접 비행하는 임무가 될 것이다. 한편, 목성은 태양계의 다섯번째 행성이자 가장 큰 행성으로 종종 행성의 왕으로 불린다. 목성은 4개의 갈릴레이 위성을 포함해 최소 500개의 위성이 있는 것으로 알려져 있다. 일부 과학자들은 목성이 최대 600개의 위성을 가지고 있다고 추산하기도 한다. '갈릴레이 위성' 또는 '갈릴레오 위성'은 1610년 과학자 갈릴레이 갈릴레오가 목성 주변에서 발견한 4개의 위성을 말한다. 이들 위성은 이오, 에우로페, 가니메데, 칼리스토 등 제우스(목성의 이름)의 연인의 이름을 따서 지었다. 주노(Juno) 우주선은 나사의 목성 탐사선으로 2011년 8월 5일 뉴 프런티어의 일환으로 케이프커내버럴 공군 기지에서 발사됐다. 극 궤도에 존재하는 성분과 중력장, 자기장 등을 조사하는 임무를 맡았다. 그밖에 목성의 대기에 존재하는 물의 양과 바위 응어리 존재 여부, 행성의 질량 분포, 시속 600km에 도달할 수 있는 목성의 대기 조사 등의 임무를 수행하고 있다. 오는 2024년 2월 3일 58번째로 이오 위성을 근접 통과할 예정이며 2025년 9월 2차 탐사 확장 계획이 종료된다.
-
- IT/바이오
-
나사 주노 탐사선, 목성 위성 '이오' 초근접 비행…화산 활동 원인·패턴 규명 기대
-
-
블레이드 없는 '허니콤' 풍력 터빈, 효율성·안전성 높여
- 스코틀랜드 글래스고의 캐트릭 테크놀로지스(Katrick Technologies)는 재생 에너지 분야의 판도를 바꾸고 있는 벌집 모양의 풍력 터빈을 개발했다. 야후는 캐트릭 테크놀로지스가 비록 스타트업이지만 이미 풍력 터빈 기술에 상당한 영향을 미치고 있다고 최근 보도했다. 이 회사는 더 푸른 지구를 위한 친환경 개념에 대한 에너지 연구와 개발을 수행함으로써 혁신적인 엔지니어링 기술에 중점을 두고 있다. 상단에 회전식 팬이 있는 대형 풍력 터빈인 기존 풍력 터빈은 설치 및 유지 관리 비용이 많이 들고, 상당한 규모의 땅도 필요하다는 단점이 있다. 이 회사의 새로운 벌집 모양(허니콤)의 풍력 터빈은 그 해결책이 될 수 있다. 이 터빈은 훨씬 더 컴팩트해 기존 건물이나 유사한 구조물에 설치할 수 있는 기능을 갖춘 도시 지역에 더 적합하다. 이 벌집 모양의 터빈은 구식 팬 디자인의 일반적인 회전 대신 '진동 날개꼴'을 활용해 바람을 포착한다. 이러한 에어로포일을 사용하면 훨씬 더 낮은 수준의 바람도 포착할 수 있으므로 더욱 지속 가능한 에너지가 생성된다. 캐트릭은 날개 형태의 에어로포일이 바람의 운동 에너지를 기계적 진동으로 변환하고 이를 전기로 변환하는 과정을 설명하고 있다. 이를 간단하게 표현하면, 에어로포일은 바람의 움직임을 감지하고 그 움직임을 에너지로 전환하는 역할을 한다. 대부분의 블레이드 없는 풍력 터빈 설계는 다른 건물 유형과 달리 조류 충돌로 인한 문제가 더 이상 발생하지 않도록 되어 있다는 것을 의미한다. 캐트릭의 터빈은 육각형 팬과 유사한 디자인으로, 진동 날개 부분은 벌집 모양으로 제한된 범위에서 느리게 움직인다. 회사는 아직 새와 관련된 안전성에 대한 언급을 하지 않았지만, 일반인들도 동물과 파편의 유입을 방지하기 위해 이러한 터빈 주변에 간단하게 격자를 배치할 수 있다는 것을 알 수 있다. 이 디자인은 더욱 컴팩트하며 비용을 절감하고 제조업체에 따라 "시각적으로 어색하지 않고", "환경과 야생 동물에 미치는 영향을 최소화하는", "설치 공간이 적고" 오래 지속된다는 설명이다. 2015년 MIT 테크놀로지 리뷰(Technology Review) 등에서 블레이드 없는 터빈을 만드는 데 드는 비용과 설치 공간이 상대적으로 저렴하지만, 기능 측면에서는 비용 대비 효율성이 낮고 에너지 생성 잠재력이 낮다는 비판도 있었다. 이 특정 설계에서는 수직으로 구축된 기존 풍력 터빈과 동일한 전력을 생성하기 위해 훨씬 더 많은 수평 공간이 필요할 수 있다. 캐트릭은 자사 웹사이트에서 "단지 1km의 패널 하나로 매년 8만대의 테슬라 90kW 차량을 충전하거나 760가구에 전력을 공급할 수 있다"라고 밝혔다. 어쨌든 더 작고 간단하며 안전한 디자인의 장점이 단점보다 더 많을 수 있다. 에너지 인더스트리 리뷰(Energy Industry Review)에서는 "이 설계가 재생 에너지 생성 방식에 혁명을 일으킬 수 있다"고 평가했다. 텍사스의 에어로마인(Aeromain) 또한 작고 효율적인 풍력 터빈을 개발하고 있다. 이 풍력 터빈 설계는 경주용 자동차를 모델로 하여 태양광 패널과 함께 작동한다. 이 두 모델 모두 활발히 개발 중이다. 한편, 한국에서는 풍력발전 비용 상승에 대한 우려가 커지자, 기술 개발 보다는 풍력발전이 가장 비용 효율적인 에너지원이라는 점을 강조하고 나섰다. 박경일 한국풍력산업협회 회장은 지난 2023년 12월 7일 한국풍력산업협회가 '2023 세계 풍력의 날'을 기념해 파라스파라 서울에서 개최된 풍력발전 심포지엄에서 "풍력에너지는 경제성이 높고, 대규모 공급이 가능한 에너지원으로 에너지 안보 확보, 탄소국경세 대응, RE100 달성 등 국가와 국내 기업들이 당면한 문제를 해결하기 위한 가장 효과적인 수단"이라고 말했다. 그는 이어 "풍력발전은 향후 전반적으로 비용의 하락이 가능한 에너지원"이라고 덧붙였다.
-
- 산업
-
블레이드 없는 '허니콤' 풍력 터빈, 효율성·안전성 높여
-
-
생쥐용 VR 고글 개발, 뇌 연구의 새로운 장을 열다
- 생쥐를 위한 새로운 가상현실(VR) 고글이 개발됐다. 이 고글은 기존 VR 시스템이 가진 단점을 개선하여, 생쥐가 가상 환경에 완전히 몰입할 수 있도록 설계됐다. 이를 통해 생쥐의 뇌 활동 패턴을 보다 정확하게 관찰할 수 있을 것으로 기대된다. 과학 전문매체 아이에프엘 사이언스(IFL SCIENCE)에 따르면 미국 노스웨스턴 대학교 연구팀이 새로운 VR 고글을 개발했다. 이 고글은 생쥐의 행동을 뇌 회로와 함께 연구하는데 사용될 예정이다. 기존의 VR 시스템은 컴퓨터 화면을 사용하여 생쥐가 화면 주변을 볼 수 있었으나, 3D 깊이를 제대로 전달하지 못하는 등의 제약이 있었다. 또한, 머리 위 위협을 시뮬레이션하는 데에도 한계가 있었다. 새로운 VR 고글은 이러한 문제점들을 해결하여 생쥐의 행동과 뇌 활동 연구에 큰 도움이 될 것으로 기대된다. 연구팀이 개발한 생쥐용 미니어처 VR 고글은 각 눈에 하나씩 두 세트의 렌즈와 스크린으로 구성되어 있다. 이 렌즈와 스크린은 트레드밀 위의 생쥐의 얼굴 가까이에 배치되어 각 눈에 180도 시야를 제공한다. 생쥐 맞춤형 VR 시스템의 이름은 iMRRSIV(Miniature Rodent Stereo Illumination VR, 미니어처 설치류 입체 조명 VR)이다. 인간 VR 헤드셋과 달리 이 고글은 실제로 생쥐의 머리를 감싸지 않는다. 각 눈에 하나씩 두 세트의 렌즈와 스크린을 런닝머신에 있는 동물의 얼굴 가까이에 배치하여 각 눈에 180도 시야를 제공한다. 보다 전통적인 VR 시스템을 사용하여 몇 가지 흥미로운 통찰력을 얻었지만 쥐는 화면 주변을 볼 수 있으며 이로 인해 훈련이 더 어려워졌다. iMRRSIV는 큰 발전을 이루었다. 새로 개발된 고글을 사용하면 연구 대상인 생쥐들이 가상 환경을 자유롭게 탐색할 수 있다. 연구자들은 이를 통해 생쥐가 가상 환경에서 어떤 행동을 하는지 관찰함으로써, 생쥐의 뇌 작동 방식을 이해할 수 있다. 이 고글은 실험실에서 생쥐들의 행동을 뇌 회로와 연계하여 연구하는 데 사용된다. 기존의 VR 시스템은 생쥐가 주변 실험실 환경을 볼 수 있었지만, 새로운 VR 고글은 생쥐의 시야를 완전히 차단하여 더욱 깊은 몰입을 가능하게 한다. 이로 인해 d연구자들은 뇌의 활동 패턴을 보다 정확하게 관찰할 수 있게 됐다. 논문 수석 저자인 돔 핑케(Dom Pinke)는 "지금까지 실험실에서는 동물을 둘러싸기 위해 대형 컴퓨터나 프로젝션 스크린을 사용해 왔다. 인간에게 이것은 거실에서 TV를 보는 것과 같다. 여전히 소파와 벽이 보인다"라며 기존 VR의 단점을 설명했다. 그는 "우리는 여전히 개선 작업을 하고 있지만 우리 고글은 작고 상대적으로 저렴하며 사용자 친화적이기도 하다. 이를 통해 VR 기술을 다른 연구실에서도 더 많이 이용할 수 있게 될 것이다"라고 말했다. 예를 들어, 연구팀은 이 고글을 활용하여 생쥐가 포식자로부터 도망치는 행동을 연구했다. 연구팀은 생쥐용 VR 고글을 사용하여 머리 위의 위협을 시뮬레이션하며 실험에서 혁신적인 결과를 얻었다. 연구팀은 고글을 통해 생쥐의 시야 위에 어두운 원반을 투사하여 포식자를 시뮬레이션했다. 원반이 커질수록, 생쥐들은 도망치거나 얼어붙는 두 가지 다른 반응을 보였다. 돔 핑케는 "쥐의 시야는 새처럼 상공에 있는 포식자를 감지하는 데 매우 민감하다"면서 "이것은 학습된 행동이 아니라 쥐의 뇌에 각인된 행동이다"라고 말했다. 이 연구는 생쥐의 뇌에서 이러한 반응을 조절하는 신경 회로를 연구하는 데 중요한 역할을 한다. 이러한 연구는 생쥐의 본능적 반응과 생존 메커니즘에 대한 새로운 통찰력을 제공할 것으로 기대된다. 이러한 혁신적인 접근법은 생쥐의 뇌가 다양한 상황에 어떻게 반응하는지를 이해하는 데 큰 도움이 될 뿐만 아니라, 뇌 활동을 실시간으로 관찰할 수 있는 새로운 시각을 제공한다. 연구진은 앞으로 생쥐가 포식자에 의한 위협이 아닌 상황에서의 뇌 활동을 연구할 예정이다. 또한, 이 고글을 활용하여 뇌의 작동 원리를 더 깊이 연구하고, 다양한 동물을 대상으로 한 실험에도 활용할 계획이다. 이러한 혁신적인 연구는 VR 기술이 생물학과 뇌과학 연구에 미치는 긍정적인 영향을 보여주며, 이 분야의 접근성을 향상시킬 수 있는 가능성을 제시한다. 공동 제1저자인 존 이사(John Issa)는 "미래에는 쥐가 먹이가 아니라 포식자인 상황을 살펴보고 싶다"고 말했다. 그는 "예를 들어 파리를 쫓는 동안 뇌 활동을 관찰할 수 있다. 그 활동에는 많은 깊이 인식과 거리 추정이 포함된다. 이것이 바로 우리가 포착할 수 있는 것들이다"라고 말했다. 이 연구는 저널 '뉴런(Neuron)'에 게재됐다.
-
- IT/바이오
-
생쥐용 VR 고글 개발, 뇌 연구의 새로운 장을 열다
-
-
입자물리학, 양자 우주 탐사 위한 10개년 계획 공개
- 입자 물리학 프로젝트 우선 순위 지정 패널(Particle Physics Projects Prioritization Panel·P5)은 최근 향후 5년에서 10년 간의 연구 자금 지원에 대한 권장 사항을 담은 상세한 보고서를 발표했다. 입자물리학은 기본입자의 특성과 상호작용을 탐구하는 물리학의 한 분야이다. 이 권고안은 뮤온, 중성미자, 암흑물질, 힉스 입자 등의 연구를 포함하고 있으며, 비록 구속력은 없지만 미국 입자 물리학 커뮤니티의 의견을 반영한다. 이는 물리학 연구 분야에서 가장 창의적인 아이디어 중 일부를 제시하는 것으로, 해당 분야의 발전 방향을 제안하고 있다. 인터넷 포럼 빅씽크(Big Think)는 최근 보도를 통해 미국 입자 물리학 커뮤니티가 다년간의 검토를 거쳐 향후 5년에서 10년간의 연구 비전을 발표했다고 전했다. 이들은 다양한 프로젝트들이 자금을 지원받을 경우, 연구자들이 자연의 법칙을 더 깊이 이해하는 데 크게 기여할 수 있을 것이라고 강조했다. 이번 권고안은 '양자 우주 탐사: 입자 물리학의 혁신과 발견을 위한 길'이라는 제목의 보고서에서 발표됐다. 이 보고서는 고에너지 물리학 자문 패널(HEPAP)의 하위 패널인 입자 물리학 프로젝트 우선순위 지정 패널(P5)에 의해 작성됐다. 이 권고안은 미국 에너지부 과학국과 국립과학재단 등 자금 지원 기관에 제출되어 향후 10년간의 자금 지원 결정을 안내하는 데 사용될 예정이다. 입자 물리학자들은 실험실에서 달성 가능한 최극단의 조건에서 물질의 거동을 연구한다. 이들은 양성자와 전자와 같은 아원자 입자를 거의 광속에 가까운 속도로 가속시키고, 크고 강력한 입자 가속기를 사용하여 이들을 충돌시킨다. 세계에서 가장 강력한 가속기를 사용하는 과학자들은 약 섭씨 7조도에 달하는, 상상하기 어려운 극도의 고온에 도달할 수 있다. 이는 태양의 핵심보다도 10만 배 더 뜨겁고, 초신성의 중심보다 약 100배 더 뜨겁다. 빅뱅 직후 1조분의 1초도 안 되는 시점부터 우주 전체에 걸쳐 온도가 균일하지 않았다. 미국 입자 물리학 커뮤니티는 약 5년마다 지난 5년 동안의 진전을 평가한다. 이 정보를 바탕으로, 단기적으로 진전을 이룰 가능성이 높은 연구에 우선 순위를 둔다. 커뮤니티는 예산, 필요한 기술의 존재 여부 및 개발 상황과 같은 실질적인 사항을 고려해야 한다. 과학적 영향력도 중요한 고려 대상이다. P5와 HEPAP는 모두 어떤 프로젝트를 추진해야 할지에 대한 권고를 제시하는 자문 및 정부 자금 지원 기관에 불과하다. P5 보고서는 다양한 규모와 영향력을 가진 프로젝트를 권장한다. 이 중 더 큰 프로젝트 중 하나는 우주의 우주 마이크로파 배경을 연구하기 위한 4세대 노력이다. 이 마이크로파는 빅뱅 이후 남은 가장 오래된 탐지 가능한 잔해로, 초기 우주의 모습을 직접 관찰할 수 있게 해 준다. 또 다른 주요 프로젝트는 세계적 수준의 중성미자 연구 프로그램을 강화하기 위해 페르미랩(Fermilab) 가속기 단지를 업그레이드하는 것이다. 페르미랩은 미국의 주요 입자물리학 연구소로, 지구 전체를 통과할 수 있는 드물게 상호작용하는 중성미자의 행동을 연구하기 위해 특별한 노력을 기울이고 있다. 중성미자 연구는 우주가 왜 물질로만 보이는지에 대한 해답을 찾는 데 중요한 역할을 할 수 있으며, 우리가 가진 최고의 이론은 반물질도 동등하게 존재해야 한다고 가정한다. P5 보고서는 또한 일반 물질보다 약 5배 더 널리 퍼져 있을 것으로 추정되는, 형태가 알려지지 않은 암흑물질을 찾기 위한 3세대 실험을 권장하고 있다. 만약 암흑물질이 실제로 존재한다면, 그것은 거의 상호작용 없이 지구를 통과할 것으로 예상된다. 이러한 이론적 형태의 물질을 탐지하기 위해서는 집중적인 연구 노력과 첨단 기술이 필요하다. 보고서는 또한 미국이 유럽이나 아시아에서 개발될 힉스 입자에 대한 심층 연구를 수행할 미래의 가속기 프로젝트에 참여하는 것을 권장한다. 이는 2012년에 발견된 힉스 입자가 다른 아원자 입자에 질량을 부여하는 역할을 한다는 것을 더 상세히 연구하는 데 중요하다. 또한, 고에너지 뮤온 충돌기의 개발 가능성을 탐구하는 것도 야심 찬 제안 중 하나다. 뮤온은 전자보다 무겁고, 빠르게 붕괴하는 특성을 가지고 있다. 뮤온 충돌기를 만들기 위해서는 연구자들이 뮤온을 생성하고 포획한 후, 매우 짧은 시간 내에 가속하고 충돌시켜야 한다. 이러한 시설의 구현 가능성은 아직 확실하지 않지만, 국가 가속기 과학 커뮤니티가 협력하여 이를 확인하는 것이 중요하다. 더 적당한 가격의 미래 시설에는 아이스큐브(IceCube) 감지기의 업그레이드가 포함된다. 아이스큐브는 남극 대륙의 입방 킬로미터 규모의 얼음을 활용하여, 현재까지 발견된 가장 강력한 에너지를 가진 우주 중성미자를 포함해 우주 중성미자를 연구한다. 이러한 연구는 초신성, 중성자별 충돌, 거대한 블랙홀 주변에서 가속되는 물질과 같은 격렬한 천문학적 현상에 대한 중요한 통찰력을 천문학자들에게 제공할 수 있다. 2세대 아이스큐브는 10배 더 많은 얼음을 사용하여 훨씬 더 정밀한 측정이 가능하다. P5 위원회의 권고안은 구속력은 없지만, 미국 입자물리학 커뮤니티의 판단을 반영하고 있다. P5 소집 전에는 수천 명의 물리학자들이 스노우매스 프로세스(Snowmass Process)를 통해 함께 작업했다. 여러 해에 걸쳐 이들은 최고의 아이디어를 제안하고, 이에 대한 토론을 위해 대규모 회의에 모였다. 토론, 비평 및 개선을 거쳐 스노우매스의 제안은 자연 법칙에 대한 우리의 이해를 향상시키는 가장 창의적인 아이디어 중 일부를 제시한다. P5 위원회는 스노우매스의 제안을 검토하여 일부는 개선하고, 나머지는 자금 지원 기관에 제출할 예정이다. 이 과정의 다음 단계는 미국 DOE(에너지부) 및 NSF(국립과학재단)와 같은 기관들이 국제적 차원의 협력을 고려하고 재정적 실제 상황을 반영하는 것이다. 2024년이 되면 미국 입자물리학 연구의 미래 방향이 더욱 명확해질 것으로 기대된다. 반면, 한국의 경우 연구 지원금이 끊기면서 연구진이 어려움을 겪고 있다. 한국의 연구팀은 우주에서 가장 높은 에너지를 가진 것으로 알려진 우주선(cosmic ray) 관측에 성공한 '텔레스코프 어레이(TA) 코퍼레이션' 국제 공동 연구에 참여 하고 있었다. 박일흥 성균관대 물리학과 교수가 이끄는 연구팀은 지난 연구 최종 평가에서 최우수 등급을 받았음에도 불구하고 한국연구재단의 우수연구자교류지원사업에서 탈락하여 연구 중단 위기에 직면했다. 이 연구팀이 관측하는 우주선은 우주공간에서 지구로 끊임없이 도달하는 다양한 입자와 방사선으로, 이를 통해 암흑물질을 비롯한 미지의 우주 구성물질을 규명하는 데 중요한 역할을 할 수 있다. 그러나 아쉽게도 2023년 1월, 연구비 확보의 불확실성으로 인해 박 교수 연구팀의 연구가 중단됐다. 결과적으로 한국 연구팀은 최소 1~2년 동안 TA 코퍼레이션 국제 공동 연구에 기여할 수 없게 됐다.
-
- 산업
-
입자물리학, 양자 우주 탐사 위한 10개년 계획 공개
-
-
[퓨처 Eyes(16)] 파력 발전으로 선박 항속 거리 늘린다
- 중국 연구진이 선박에 탑재할 수 있는 파력 발전기를 개발해 눈길을 끌고 있다. 연구진에 따르면, 이 발전기를 탑재하면 선박의 항속 거리가 최대 3배까지 늘어날 수 있다. '파력 발전((Wave Power)'은 해양에서 파도의 운동 에너지를 활용하여 전기 에너지를 생성하는 기술이다. 다시 말하면, 파력 발전은 바다의 파도, 조류, 밀물, 파랑 등 해양 에너지 현상을 이용해 전기를 생산하는 방식으로 재생 가능한 에너지원 중 하나로 간주된다. 바닷물은 지구의 70%를 차지하고 있다. 바다의 파도는 바람에 의해 형성되며, 이 움직임에는 상당한 양의 에너지가 포함되어 있다. 파력 발전은 이 에너지를 포착하여 사용 가능한 전기로 변환한다. 기술 전문매체 뉴 아틀라스에 따르면 중국 상하이 선박 및 해운연구소 연구팀은 선박의 갑판 아래 설치할 수 있는 파력 발전기인 '히빙 오실레이터(Heaving oscillators)'를 개발했다. 히빙 오실레이터는 해상에서 파도의 움직임을 이용하여 에너지를 생산하는 장치이다. 원래 히빙 오실레이터는 부유체(buoy)를 사용하여 파도의 움직임을 전달받아 움직이는 구조물이다. 부유체가 파도의 움직임에 따라 위아래로 움직이면, 이 움직임은 발전기와 연결된 기계장치를 통해 전기 에너지로 변환한다. 기존의 파력 발전기는 이러한 부유식 구조물에 설치해 파도의 움직임을 직접 활용하여 전기를 생산한다. 하지만 파력 발전기를 선박에 설치할 경우 화물 공간을 차지하게 되고, 파도로 인한 충격을 더 심하게 받을 수 있다는 단점이 있다. 중국 상하이 선박연구소 연구팀은 이러한 단점을 해결하기 위해 선박의 갑판 아래에 히빙 오실레이터를 설치했다. 갑판 아래 설치된 히빙 오실레이터는 선박이 바다를 이동할 때 일어나는 선박의 기울기와 구르기, 피칭 동작을 유압 실린더로 전달해 전기를 생산한다. 또한, 오실레이터의 무게를 조절할 수 있어 극한의 날씨에서도 선박 구조에 가해지는 스트레스를 줄일 수 있다. 중국 연구진, 파력 발전기 개발 상하이 선박연구소의 연구팀은 화물 공간을 확보하기 위해 파력 발전기를 화물선 갑판 아래에 설치하되 선체에 의해 바닷물로부터 격리되는 2체형 포인트 흡수 시스템을 제안했다. 이 장치는 선박의 상단과 하단에 단단히 부착된 프레임과 프레임 레일을 위아래로 움직일 수 있는 진동자 본체, 진동자를 매달기 위한 스프링, 진동자의 바닥과 하단에 부착된 유압 실린더로 구성된다. 유압 동력 이륙 장치를 통해 오일을 펌핑하는 실린더는 오실레이터가 선박과 고정된 프레임 사이에서 상하로 움직이며 에너지를 생성하도록 한다. 또한 오실레이터는 물로 채워져 있으며, 무게를 조절하기 위해 물을 추가하거나 뺄 수 있는 시스템이 장착되어 있다. 이는 특히 극한의 날씨 조건에서 오실레이터의 무게를 감소시켜 선박 구조에 가해지는 스트레스를 줄이는 데 특히 유용하다. 연구팀은 "이 새로운 설계를 통해 선박이 기울어지거나 구르거나 피치 운동을 할 때 슬라이드 막대를 따라 움직일 수 있는 오실레이터를 구현할 수 있었다"고 밝혔다. 또한 "이를 통해 이전 설계에서 하나 또는 두 개의 운동 축에 국한되었던 것과 달리 세 개의 다른 운동 축에서 에너지를 생성할 수 있다"라고 설명했다. 시뮬레이션 테스트를 통해 연구팀은 이 발전기가 파도가 90도 각도로 선박 측면에 직접 부딪히는 상황, 즉 빔 해역에서 에너지 포집 효율이 가장 높다는 사실을 확인했다. 특히 이 시스템은 '특정 파도 주기'에서 축대칭 점 흡수기의 이론적 최대 흡수 전력의 최대 90.71%"에 도달할 수 있는 것으로 나타났다. 연구팀은 파도 탱크에서의 테스트를 위해 시스템 프로토타입을 제작하는 것을 다음 단계로 계획하고 있다. 이들은 동일한 시스템을 다른 해양 구조물과 통합하여 작동하도록 "설계를 쉽게 확장할 수 있다"고 밝혔다. 또한 연구팀은 향후 파도 탱크 테스트를 통해 히빙 오실레이터의 성능을 추가적으로 검증할 예정이다. 이 과정을 통해 시스템을 다양한 해양 구조물에 적용 가능하도록 확장하는 방안을 탐구할 계획이다. 이 연구는 '재생 에너지(Renewable Energy)' 저널에 개재됐다. 선박에 탑재된 파력 발전기의 장점 부유식(플로팅) 방식의 파력 발전기는 대규모 설치가 가능하고, 전력 그리드와의 연계가 용이하다는 장점이 있다. 그러나 설치 비용과 유지 관리 비용이 높다는 단점이 있다. 이에 반해, 선박에 탑재된 파력 발전기는 기존의 플로팅 방식에 비해 설치 비용이 저렴하고, 유지 관리가 쉽다. 또한, 선박이 운항하면서 발생하는 파동을 활용할 수 있기 때문에, 에너지 효율이 높다는 장점이 있다. 파력 발전의 상용화 전망 이 연구는 파력 발전의 상용화를 위한 중요한 진전으로 평가받고 있다. 파력 발전은 재생 가능 에너지원 중 하나로, 기존의 화석 연료에 비해 친환경적이라는 장점이 있다. 이번 연구가 상용화된다면, 선박의 운항 효율을 높이고 해양 환경 보호에 기여할 수 있을 것으로 기대된다. 다만, 이 연구에서 조사하지 않은 한 가지는 평균적인 선박 여행에서 얼마나 많은 전력을 공급할 수 있는지 여부이다. 이는 선박 내부의 공간 고려 사항과 함께 이 같은 시스템이 광범위하게 활용될 수 있는지 여부의 핵심이 될 것이다. 또한, 파력 발전에는 여러 도전과제가 있다. 파도의 불규칙성과 해양 환경의 거친 조건 때문에 설치와 유지 관리가 어려울 수 있으며, 초기 투자 인프라 구축에 비용이 많이 들 수 있다. 또한 해양 환경에 영향을 미칠 수 있는 환경적인 문제도 고려해야 한다. 한국에 적용 가능성은? 히빙 오실레이터는 대형 선박의 항속 거리를 늘리는 데 효과적인 기술로 평가된다. 특히, 한국은 해운 강국으로, 대형 선박을 많이 보유하고 있다. 따라서 히빙 오실레이터가 한국의 해운 산업에 큰 도움이 될 것으로 기대된다. 다만, 히빙 오실레이터가 한국에 도입되기 위해서는 몇 가지 과제가 해결되어야 한다. 우선, 히빙 오실레이터의 경제성을 검증해야 한다. 또한, 한국의 해역 환경에 맞게 설계되어야 한다. 연구팀은 "히빙 오실레이터는 기존의 파력 발전기와 비교해 효율적이고 안전하다"며 "향후 상용화를 위해 노력하겠다"고 밝혔다.
-
- 포커스온
-
[퓨처 Eyes(16)] 파력 발전으로 선박 항속 거리 늘린다
-
-
뮌헨공대, 태양광 수소 생산 세계 최고…경제성 확보 과제
- 독일 뮌헨대학교 연구팀이 태양광 수소 생산 분야에서 세계 기록을 경신했다. 이들은 햇빛을 활용하여 포름산으로부터 수소를 생산하는 플라즈몬 나노구조를 개발하여 녹색 수소 개발에 획기적인 발전을 이루어냈다. 산업 전문매체 '오일프라이스(Oil Price)'는 뮌헨대학교 연구팀의 이 발견이 획기적이라면서도 고가의 원자재를 사용하는 한계로 인해 경제적인 측면에서 더 효과적인 대안을 모색해야 한다고 지적했다. 뮌헨대학교 연구팀은 녹색 수소 생산 분야에서 세계적인 기록을 경신했으며, 이러한 성과를 이루어낸 고성능 나노구조를 개발했다. 뮌헨대학교 실험물리학 및 에너지 변환 교수인 에밀리아노 코르테스(Emiliano Cortés)는 나노우주로의 도약을 이루어냈다. 코르테스 교수는 "태양광의 고에너지 입자가 원자 구조와 상호 작용하는 지점에서 연구가 시작되었다"라며 "태양에너지를 더 효율적으로 활용하기 위한 소재 솔루션을 연구 중"이라고 설명했다. 이러한 발견은 새로운 태양전지와 광촉매의 가능성을 열어두고 있다. 그러나 코르테스 교수는 "햇빛이 희석돼 지구에 도달하기 때문에 면적당 에너지가 상대적으로 낮다"는 문제에 직면하고 있다고 말했다. 헤란 박사는 "먼저, 우리는 플라즈몬 금속(우리 경우에는 금)에서 10~200나노미터 범위의 입자를 생성했다"라며 "이 크기에서 가시광선은 금 전자와 매우 강하게 상호작용하여 공명 진동을 유발한다"라고 설명했다. 이러한 현상을 통해 나노입자는 더 많은 햇빛을 포착하고, 매우 높은 에너지의 전자로 변환할 수 있다는 것을 밝혔다. 헤란 박사는 "이러한 과정에서 매우 국지적이고 강한 전기장이 핫스팟에서 발생한다"고 말했다. 이러한 핫스팟은 금 입자 사이에서 형성되며, 따라서 두 사람은 백금 나노입자를 이러한 핫스팟 사이 공간에 직접 배치하는 아이디어를 얻었다. 오늘날 수소는 주로 화석 연료, 주로 천연가스에서 생산된다. 그러나 두 사람은 "플라즈몬 금속과 촉매 금속의 결합을 통해 이산화탄소를 유용한 물질로 변환하는 등 다양한 산업 응용 분야를 위한 강력한 광촉매를 개발 중이다"라고 밝혔다. 이들은 이미 이러한 물질 개발에 대한 특허를 취득했다. 또한, 이전에 매사추세츠 공과대학(MIT)의 엔지니어들이 태양열을 활용하여 온실가스 배출 없이 수소를 효율적으로 생산하는 '태양열화학수소' 시스템을 개발했다. MIT, 태양열 최대 40% 활용 기존의 태양열 열화학 수소 생산 시스템은 효율성이 낮았지만, MIT의 설계는 태양열을 최대 40%까지 효율적으로 활용할 수 있다. 이 시스템은 태양열을 활용하여 물을 분해하고, 이 과정에서 생성된 수소를 청정 연료로 사용할 수 있게 한다. 이렇게 생산된 수소는 장거리 트럭, 선박, 항공기의 연료로 사용될 수 있으며, 온실가스가 전혀 배출되지 않는다. MIT의 새로운 시스템은 집중형 태양열 발전소(CSP) 방식을 사용하며, 다수의 거울을 활용하여 태양광을 집중시켜 열을 발생시킨다. 이렇게 집중된 열은 수소 생산에 활용된다. 한국의 DGIST(대구경북과학기술원)와 단국대학교 연구팀은 친환경적인 양자점을 활용하여 세계 최고 수준의 태양광 수소 생산 기술을 개발했다. 이 기술은 양자점의 물성을 조절하여 광전기화학 소자에 적용, 태양광을 효과적으로 수소 생산에 활용하는 방법을 제공한다. 게다가 한국의 DGIST(대구경북과학기술원)와 단국대학교 연구팀은 친환경적인 양자점을 활용하여 세계 최고 수준의 태양광 수소 생산 기술을 개발했다. 이 기술은 양자점의 물성을 조절하여 광전기화학 소자에 적용함으로써, 태양광을 효과적으로 수소 생산에 활용할 수 있는 방법을 제시한다.
-
- 산업
-
뮌헨공대, 태양광 수소 생산 세계 최고…경제성 확보 과제
-
-
전기화학 기술, 가축 분뇨에서 친환경 자원 생산
- 환경 오염을 주범으로 여겨지는 가축 분뇨에서 친환경적으로 전기를 생산하는 기술이 개발됐다. 매년 전 세계 축산농가에서 30억톤 이상의 동물 배설물이 발생하고 있다. 이는 미국 엠파이어 스테이트 빌딩 9000개 이상에 해당하는 양이다. 모든 분뇨는 수질을 악화시키며 유독한 연기와 온실가스를 방출한다. 그러나 저렴한 전기를 이용해 동물 배설물을 재활용하고 귀중한 화학물질을 회수할 수 있는 기술이 개발돼 환경 오염을 크게 줄일 수 있을 것으로 기대된다. 학술지 '사이언스 어드밴스(Science Advances)'에서는 '네이처 서스테이너빌리티(Nature Sustainability)'에 발표된 연구를 소개했다. 이 연구는 전기를 이용하여 동물 배설물에서 유기 영양소를 분해하고, 동시에 가치 있는 화학물질을 회수하는 새로운 방법을 제시한다. 초기 예측에 따르면, 이 방법으로 얻어지는 화학물질의 경제적 가치가 기술 구현 비용을 상회할 것으로 예상된다. 이는 농부들에게 수익성이 높은 선택지가 될 수 있음을 시사한다. 클락슨 대학의 김태영 화학자는 이번 연구에는 참여하지 않았지만 "풍력, 태양열 발전소에서 발생하는 값싸고 재생가능한 전기를 결합하면 거름이 풍부한 시골 농업 지역에서도 찬환경 전기가 생산될 수 있다"고 말했다. 많은 축산업자들은 이미 동물 배설물을 재활용하기 위해 노력하고 있다. 이들은 배설물을 분뇨 라군(연못)에 저장하여, 바닥에 침전된 암모니아가 풍부한 고형물을 준설하여 비료로 재사용한다. 또한, 남은 유기 화합물을 미생물이 메탄으로 분해하게 하여 이를 수집, 태워 전기를 생산할 수 있다. 이러한 방식은 지속 가능한 에너지와 농업 사이의 상호 작용을 보여주는 예이다. 그럼에도 불구하고, 엄청난 양의 암모니아와 기타 화합물이 자연환경으로 방출되어 해조류가 번성하고 물고기가 죽게 되는 환경오염이 발생한다. 이에 최근 몇 년 동안 몇몇 연구팀에서는 분뇨 라군에서 암모니아와 기타 귀중한 화학물질을 포착하기 위한 전기화학적 방법을 탐색하기 시작했다. 예를 들어, 2021년 실험실 연구에서 김태영 교수와 그의 동료들은 전류를 사용해 막을 통해 양으로 하전된 암모늄 이온을 유도하여 비료 전구체를 농축하고 쉽게 복구할 수 있는 배터리 유형 설정을 보고했다. 그러나 멤브레인(두께가 얇은 막) 설정은 운영하기 어렵고 확장하는 데 비용이 많이 들 수 있다. 위스콘신 매디슨 대학교 환경 엔지니어인 모한 킨(Mohan Qin)과 동료 송진이 이끄는 연구팀은 2단계 접근 방식을 채택해 멤브레인을 없앨 수 있는 가능성을 확인했다. 두 단계 모두 KNiHCF(칼륨·니켈·헥사시아노철산염)라는 배터리 전극 재료를 사용한다. KNiHCF는 이온이 들어오고 나갈 수 있는 간격이 있는 층 구조를 가지고 있다. 연구원들은 KNiHCF의 층 간격이 나트륨이나 칼슘과 같이 분뇨에서 일반적이지만 가치는 떨어지는 이온 대신 암모늄 및 칼륨 이온을 끌어들이는 데 이상적이라는 것을 발견했다. 연구진은 이후 이온으로 채워진 KNiHCF 전극을 폐수 용액에서 제거하고, 이를 이온 전도성 전해질을 첨가한 깨끗한 물이 담긴 두 번째 용기에 두 번째 전극과 함께 배치했다. 전압을 가하면 전자가 두 번째 전극으로 흘러 들어갔고, 이로 인해 KNiHCF 전극에서 양전하를 띤 암모늄 및 칼륨 이온을 용액으로 끌어당겨 농축하고 쉽게 복구할 수 있는 음전하가 생성됐다. 이 설정에는 보너스가 있다. 두 번째 전극의 음전하는 용액의 물과 산소를 유발하여 수소 가스나 과산화수소로 반응했는데, 두 가지 모두 회수된 암모니아 및 칼륨과 함께 판매될 수 있는 귀중한 화학물질이다. 연구팀은 KNiHCF 전극은 반복적으로 사용하면 성능이 저하되는데, 이 문제는 이미 해결 방안을 찾았다고 밝혔다. 연구원들은 또한 1000마리의 젖소가 있는 낙농장의 폐기물을 확장하고 관리하기 위한 설정의 잠재력을 평가하기 위한 분석을 수행했다. 그들은 전기 가격이 미국 평균인 킬로와트시(kWh)당 약 0.08달러(약 100원)로 책정될 경우 해당 운영에서 연간 최대 20만달러(약 2억6320만원)의 이익을 창출할 수 있을 만큼 귀중한 화학 물질을 생성할 수 있다는 사실을 발견했다. 송진 연구원은 재생 가능 전력이 일부 농촌 지역의 전기 비용을 2030년까지 kWh당 약 0.03달러(약 39원)로 낮출 수 있을 것으로 예상했다. 풍력이나 태양열 발전소는 종종 전력망이 처리할 수 있는 것보다 더 많은 전기를 생산하므로 엔지니어는 전력을 버리거나 터빈을 꺼야 했다. 이에 송진은 "풍력, 태양광과 결합할 수 있다면, 가격이 저렴할 때만 전기를 사용하도록 설계할 수 있다"고 말했다. 모한 킨은 "전체 공정이 얼마나 효율적인지 고려할 때, 전기화학적 처리는 거름에 있는 암모니아의 거의 70%를 포착하고 비슷한 양만큼 농장에서 배출되는 암모니아를 줄일 수 있다"며 "이것은 오래된 (가축 분뇨)문제를 처리하는 매우 간단하고 효율적인 방법"이라고 주장했다.
-
- 산업
-
전기화학 기술, 가축 분뇨에서 친환경 자원 생산
-
-
호주 기업, 수소 없이도 700°C 열과 전기 생산 기술 특허
- 기업 활동 중 발생하는 이산화탄소를 최소화하고, 불가피하게 발생하는 이산화탄소에 대해서는 탄소 배출권을 구매하여 실질적인 탄소 배출량을 '0'으로 만드는 '탄소제로' 전략이 주목받고 있다. 이제는 석유 자원이 풍부한 국가들도 이러한 탄소제로 움직임에 동참하며 청정에너지 개발에 적극적으로 나서고 있다. 미국의 경제 전문 매체 포브스는 텍사스주가 세계에서 두 번째로 석유 자원이 풍부함에도 불구하고 호주로부터 수소열 에너지를 도입하려는 배경을 최근 분석했다. 포브스에 따르면, 텍사스주는 기존의 석유나 천연가스 대신 탄소 배출이 적은 청정 에너지 소스에 주목하고 있다. 특히 수소는 청정 에너지로 분류되며, 자동차 엔진에서 연소되거나 전기로 변환될 때 탄소를 배출하지 않는다. 하지만, 높은 온도에서는 산화질소나 질소산화물을 방출할 수 있다. 수소의 생산 방식에 따라 그 환경적 영향이 달라질 수 있다. 메탄을 사용해 제조되는 청색 수소는 비용이 저렴하지만 환경적으로 깨끗하다고 볼 수 없다. 반면, 물을 전기분해하여 만드는 녹색 수소는 비용이 더 들지만 환경에 더 친화적이다. 호주 기업, 뉴멕시코주에 신규 공장 건설 뉴멕시코주는 연소 과정 없이 수소를 열 에너지로 전환하는 새로운 기술을 보유하고 있어, 호주로부터의 수소 도입을 통해 이를 열 에너지로 변환하고자 한다. 이 기술은 중공업에서 바로 사용하거나 거의 모든 전기 응용 분야에서 전기로 변환할 수 있는 잠재력을 가지고 있다. 특히, 연소 과정이 없다는 점은 석탄을 태워 열을 생성하고 전기를 생산하는 전통적인 발전소의 복잡한 기계적 단계를 건너뛸 수 있음을 의미한다. 이러한 접근은 나쁜 탄소 배출을 크게 줄일 수 있는 방법으로, 환경 보호와 지속 가능한 에너지 사용을 위한 중요한 전략 중 하나이다. 호주에 본사를 둔 스타 사이언티픽(Star Scientific)은 2024년 뉴멕시코주 앨버커키에서 새로운 공장 건설을 시작할 계획이라고 발표했다. 이 프로젝트에는 약 1억 달러(약 1297억원)가 투자될 예정이며, 공장은 최대 50에이커 규모의 부지에 10개의 건물로 구성될 예정이다. 이 공장은 연구부터 관리까지 다양한 부서를 아우르며 약 200명의 직원을 고용할 것으로 기대된다. 이번 투자는 뉴멕시코주의 미셸 루잔-그리샴(Michelle Lujan-Grisham) 주지사와 스타 사이언티픽의 글로벌 그룹 회장인 앤드류 호바스(Andrew Horvath)가 지난달 시드니에서 만난 자리에서 발표됐다. 실험 시연서 713°C까지 치솟아 이 회사는 핵융합 연구 중에 흥미로운 발견을 했다. 수소 가스와 산소 가스가 결합하여 물을 형성하도록 촉진하는 동시에 반응에서 상당한 양의 열을 방출하는 새로운 촉매를 발견했다. 이 과정은 물리학이 아닌 화학 반응에 속하며, 두 개의 수소 원자가 헬륨으로 융합되어 핵 에너지를 방출하는 과정과 유사하다. 이러한 원리는 수소 폭탄의 작동 원리를 연상시킨다. 실험실에서 수행된 시연에서는 수소와 산소 유입 파이프를 사용했다. 이 실험에서 온도는 단 몇 분 만에 713°C까지 급상승했으며, 촉매가 뜨거워지며 주황색으로 변하는 현상이 관찰됐다. 이러한 높은 온도는 연소 과정 없이도 일부 산업 공정에 필요한 열을 제공할 수 있어 공정을 단순화하는 데 기여할 수 있다. 이 촉매는 회사의 비밀로 유지되고 있으며, 이미 특허를 받았다. 이 과정은 '헤로(HERO, Hydrogen Energy Release Optimiser)'라고 명명되었으며, 이는 '수소 에너지 방출 최적화'라는 의미를 담고 있다. 이 새로운 기술을 사용하면 집과 사무실의 난방에 최대 700°C까지 필요한 온도를 조절할 수 있다. 또한, 이 과정을 통해 물을 가열하여 증기를 만들고, 그 증기로 터빈을 구동하여 전기를 생산할 수도 있다. 이러한 과정은 석탄 화력 발전소에서 일어나는 과정과 유사하지만, 석탄 연소로 인한 무거운 탄소 배출이 없다는 점에서 차이가 있다. 스타 사이언티픽에 따르면, 기존 발전소에서 석탄 연소 보일러를 이들의 HERO 공정으로 교체하면 탄소 배출량을 크게 줄일 수 있다. 만약 유입되는 수소가 그린수소라면, 전 과정에서 탄소 배출이 전혀 발생하지 않는다. 하지만, 물을 수소와 산소로 전기분해하는 과정은 상당한 에너지를 소모하는 비효율적인 방법일 수 있다. 청색 수소를 사용하는 경우, HERO의 전체 수명에 대한 이점은 명확하지 않다. 이는 청색 수소 생산 과정에서 발생하는 이산화탄소가 탄소 포집 및 저장(CCS)을 통해 시스템에서 제거되어야 하기 때문이다. 이러한 점들을 고려할 때, HERO 기술의 환경적 이점은 사용되는 수소의 종류에 크게 의존한다고 볼 수 있다. HERO, 수소 연료전지와 장점 공유돼야 수소 연료 전지는 양극과 음극을 갖추고 있으며, 배터리의 작동 원리와 유사한 방식으로 전기를 생산한다. 이 시스템은 고가의 백금 촉매를 사용하는 것이 일반적이다. 연료 전지는 전기와 열을 동시에 생산하지만, 대부분의 경우 열은 크게 활용되지 않는다. HERO는 특히 전력 공급이 작은 것으로 알려진 부문(약 9%)에서 이점을 가져야 한다. 리스타드 에너지(Rystad Energy)의 분석에 따르면, 산업 연소라 불리는 분야(15%)는 전기화를 통해 해결할 수 있으며, 이는 배터리를 사용하는 것이 가능하다. 연료 전지와 HERO는 이러한 분야에서 기회를 포착해야 한다. 연료 전지의 에너지 변환 효율은 약 65%로, 석탄 화력 발전소의 34%와 비교했을 때 상대적으로 높은 편이다. HERO의 효율성은 특정 애플리케이션에서 매우 중요하며, 성능, 비용과 내구성이 입증되면, 운송, 상업 및 주거용 건물의 난방, 가역 그리드 시스템 등 다양한 분야에서 전력이나 열을 공급하는 데 유용하게 사용될 수 있다. 스타 사이언티픽은 HERO에 대해 매우 낙관적이며, 이 기술이 시멘트 공장과 같은 산업 공정에서 필요한 열을 충분히 발생시킬 수 있으며, 장거리 운송이나 화석 연료를 사용하는 중공업 공정과 같이 탈탄소화하기 어려운 부문에서도 유용하게 적용될 수 있다고 강조하고 있다. 이는 탄소 배출을 줄이는 데 중요한 역할을 할 수 있는 혁신으로 평가받고 있다. 뉴멕시코주 주지사 사무실에 따르면 호주의 스타 사이언티픽은 올해 뉴멕시코주에 성공적으로 유치된 싱가포르, 대만, 독일 기업들에 이어 가장 최근에 합류한 국제 기업이다. 제임스 케네이(James Kenney) 뉴멕시코 환경부 장관은 “회사는 수소에 대한 주지사의 낙관적인 접근 방식과 기후 변화 대응에 대한 우리 주의 낙관적인 접근 방식에 매료됐다“고 말했다. 바이오테크, 혁신적인 수소 생산 스타 사이언티픽은 뉴멕시코주에 기반을 둔 수소를 생산하고 판매하는 바이오테크(BayoTech)의 혁신적인 방식에 깊은 인상을 받은 것으로 전해졌다. 바이오테크는 화학 공장 및 정유소에 수소를 공급하는 기존의 대규모 중앙 집중식 공장들보다 더 저렴하고 탄소 배출량이 적은 수소를 생산한다. 이 회사는 깨끗한 천연가스 또는 바이오메탄 소스를 원료로 사용하여 수소를 제조하고 있다. 바이오테크는 지난 11월 2일 미주리주 웬츠빌에 새 수소 허브를 완공했다고 밝혔다. 이 허브는 연간 350톤의 수소를 생산할 수 있는 능력을 가지고 있으며, 이 수소는 연료전지와 산업 공정에 사용될 예정이다. 또 바이오테크는 니콜라(Nikola) 수소 연료 전지로 구동되는 전기 세미 트럭과 뉴 플라이어(New Flyer) 연료전지 버스를 시연했다. 아울러 니콜라와의 파트너십을 통해 니콜라 연료전지 트럭 50대를 구매할 계획을 발표했다. 이러한 발전은 수소 에너지와 관련된 기술의 발전뿐만 아니라, 수소 기반 교통 수단의 상업적 활용 가능성을 더욱 확장시키는 중요한 진전을 나타낸다. 바이오테크의 이번 발표와 계획은 미래의 친환경 교통 수단에 대한 투자와 연구의 중요성을 강조하며, 지속 가능한 에너지 솔루션에 대한 지역 사회와 산업계의 관심을 끌고 있다.
-
- 산업
-
호주 기업, 수소 없이도 700°C 열과 전기 생산 기술 특허
-
-
AI 생성 논문을 전례 없는 정확도로 포착하는 '챗GPT 감지기'
- 인공지능(AI)이 인간의 능력을 넘어서면서 다양한 산업 분야에서 중요한 역할을 하고 있다. 하지만 이러한 AI의 능력이 다 유용한 것은 아닌 것 같다. 최근 한국은행의 보고에 따르면 의사, 회계사, 변호사와 같은 전문직의 업무 영역이 AI에 의해 위협받을 가능성이 제기됐다. 특히 교육계에서는 이 문제를 더욱 심각하게 받아들이고 있다. 자연과학, 응용과학, 의학 등의 분야에서 AI가 인간 대신 논문을 작성할 수 있게 되었다는 사실이 큰 우려를 낳고 있다. 그런데 이 같은 걱정을 앞으론 덜 수 있을 것 같다. 최근 국제 학술지 '네이처'는 캔자스 대학의 헤서 디자이어 교수와 그의 연구팀이 개발한 새로운 툴(도구)을 소개했다. 이 도구는 AI가 작성한 글을 분류할 수 있어, AI의 글쓰기 능력과 관련된 문제를 해결하는 데 도움이 될 것으로 기대된다. 최근에 개발된 새로운 AI 탐지 툴은 기존의 두 가지 AI 탐지기보다 우수한 성능을 자랑한다. 이 특화된 도구는 학술 출판사들이 AI 텍스트 생성기를 통해 만들어진 논문을 식별하는 데 큰 도움이 될 것으로 예상된다. 헤서 디자이어 교수는 이번 연구 결과가 AI 감지기 개발에 있어서의 중요한 진전을 보여준다고 언급했다. 이는 소프트웨어를 특정한 유형의 글쓰기에 맞게 조정함으로써 감지 능력을 강화할 수 있음을 시사한다. 문장 길이, 특정 단어 및 문장 부호 등으로 특징 디자이어 교수와 그의 연구팀은 챗GPT 탐지기를 '사이언스2(Science2)' 저널의 '퍼스펙티브(Perspective)' 기사에 적용한 사례를 소개했다. 이 탐지기는 기계 학습을 활용하여 글쓰기 스타일의 20가지 특성, 예를 들어 문장 길이의 변화, 특정 단어 및 문장 부호의 사용 빈도 등을 분석한다. 이를 통해 텍스트가 학술 과학자에 의해 작성되었는지, 아니면 챗GPT와 같은 AI에 의해 작성되었는지를 판별할 수 있으며, 이 연구는 높은 정확도를 달성했다고 보고됐다. 최근 진행된 연구에 따르면, 개발된 검출기는 미국 화학 학회(ACS)에서 발행한 10개의 화학 저널에서 나온 논문들의 서문 섹션을 분석하기 위해 특별히 교육을 받았다. 연구 팀은 논문의 서문 작성이 챗GPT를 사용할 경우 특히 쉽다는 점을 인지하고, 배경 문헌에 접근할 수 있는 상황에서 이 섹션을 선택했다. 연구원들은 이 도구를 효과적으로 교육하기 위해 100편의 인간이 작성한 서문을 사용했다. 이후, 그들은 챗GPT-3.5에게 ACS 저널의 스타일에 맞춰 200개의 서문을 작성하도록 요청했다. 이 중 100개는 논문의 제목을 도구에 제공하여 작성되었고, 나머지 100개는 논문의 초록을 기반으로 작성됐다. 실험 결과, 이 도구는 제목을 기반으로 한 챗GPT-3.5로 작성된 서문을 100% 정확도로 식별할 수 있었다. 반면, 논문 초록을 기반으로 작성된 서문의 경우, 정확도는 약간 낮은 98%로 나타났다. 이러한 결과는 동일한 저널에서 인간과 AI가 작성한 서문을 비교할 때 얻어졌다. 이 새로운 도구는 최신 버전인 챗GPT-4가 작성한 텍스트에서도 효과적으로 작동했다. 반면, AI 탐지기 ZeroGPT는 사용된 챗GPT 버전과 논문의 제목 또는 초록에서 생성된 소개에 따라 35~65%의 정확도로 AI가 작성한 소개를 식별하는 데 그쳤다. 또한, 챗GPT 제조사인 오픈AI가 제작한 텍스트 분류 도구의 성능 역시 높지 않았다. 이 도구는 AI로 작성된 소개를 찾아내는 데 약 10~55%의 정확도를 보였다. 이에 비해 새로운 챗GPT 탐지 도구는 훈련받지 않은 저널의 서문에서도 높은 성능을 발휘했다. 이 도구는 AI 탐지기를 혼동시키기 위해 다양한 프롬프트에서 생성된 AI 텍스트를 포착하는 데 성공했다. 하지만, 이 시스템은 과학 저널 기사에 특화되어 있어, 대학 신문의 실제 기사를 제시했을 때에는 인간이 작성한 것으로 인식하지 못하는 한계를 보였다. 학술 표절, 짧은 논문작성 기간 압박으로 탄생 베를린 응용과학대학교에서 학술 표절을 연구하는 컴퓨터 과학자인 데보라 웨버 울프는 학계에서 챗GPT의 사용이 증가하는 배경에 다른 문제들이 있다고 언급했다. 그녀는 많은 연구자들이 논문을 신속하게 작성해야 하는 압박을 받고 있으며, 이로 인해 논문 작성 과정이 과학의 중요한 부분으로 인식되지 않을 위험이 있다고 지적했다. 웨버 울프 교수는 AI 탐지 도구가 이와 같은 문제를 해결할 수 없다고 강조했다. 그녀는 이러한 도구들을 사회적 문제에 대한 '마법의 소프트웨어 솔루션'으로 여겨서는 안된다고 주장하며, 이는 더 넓은 사회적 맥락에서의 해결이 필요한 문제임을 시사했다.
-
- IT/바이오
-
AI 생성 논문을 전례 없는 정확도로 포착하는 '챗GPT 감지기'
-
-
유럽우주국(ESA), 유클리드 망원경 촬영 첫 이미지 공개
- 유럽우주국(ESA)이 '암흑 우주 탐정'으로 불리는 유클리드(Euclid) 망원경으로 촬영한 첫 이미지를 공개했다고 미국 IT매체 엔가젯(Engadget)이 최근 보도했다. 이번에 공개된 이미지는 우주 탄생의 비밀을 밝히는 데 중요한 역할을 할 것으로 보인다. 유클리드 우주 망원경은 유럽우주국의 중요한 우주 탐사 프로젝트 중 하나다. 주요 목적은 우주의 가장 큰 미스터리 중 하나인 암흑 물질과 암흑 에너지의 본성을 이해하는 것이다. 유클리드 망원경은 우주의 역사를 100억 년 전까지 거슬러 올라가 아직까지 알려지지 않은 대부분의 하늘을 대상으로 하는 방대한 3D 우주 지도를 제작하고 있다. 이 망원경은 유명한 말뚝 성운부터 은하계와 유사한 숨은 나선 은하에 이르기까지, 알려진 물체뿐만 아니라 이전에 볼 수 없었던 물체들을 선명하게 관찰하는 데 기여하고 있다. 유클리드 우주 망원경은 우주의 '암흑' 부분, 즉 암흑 에너지와 암흑 물질이 우주 진화에 미치는 영향을 조사하고 있다. 이 망원경은 1.22m(4피트) 폭의 주경을 갖추고 있으며, 가시광선 카메라와 근적외선 카메라/분광기를 사용하여 앞으로 6년간 하늘의 약 1/3을 관측할 예정이다. 이 과정에서 수십억 개의 은하가 연구될 것이다. 2023년 7월에 발사된 유클리드는 2024년 초부터 공식적인 과학 임무를 시작할 예정이나, 이미 초기 관측에서 과학자들에게 중요한 발견을 제공하고 있다. ESA에 따르면 유클리드가 관측한 페르세우스 은하단은 2억 4000만 광년 떨어진 곳에 위치해 있으며, 이 관측은 지금까지 가장 상세한 것 중 하나다. 이 은하단 내의 약 1000개 은하뿐만 아니라, 더 멀리 떨어진 약 10만 개의 다른 은하들도 포착하고 있어, 유클리드의 관측 범위와 세밀함을 잘 보여주고 있다. 유클리드, '숨은 은하' 관찰 유클리드 우주 망원경은 우리 은하계 너머에 위치한 IC 342, 일명 '숨은 은하'로도 알려진 나선 은하를 관찰했다. 유럽우주국(ESA)에 따르면, 유클리드는 특정 천체를 단일 장면에서 완벽하게 포착할 수 있는 현존하는 유일한 망원경이다. 예를 들어, NGC 6397과 같은 구형 성단은 수십만 개의 별이 중력적으로 결합된 모습을 보여주는데, 유클리드가 이 성단을 관찰한 결과는 그 세밀함과 정확도 면에서 비교할 수 없을 정도라고 ESA는 밝혔다. 유클리드 우주 망원경은 다른 망원경으로는 관찰하기 어려웠던 희미한 천체들을 선명하게 포착할 수 있다. 예를 들어, 오리온 별자리에 위치한 말머리 성운은 별의 '보육원'으로 유명하다. 유클리드를 통해 이 성운을 자세히 관찰하면, 이전에 발견되지 않았던 어린 별과 행성들을 확인할 수 있다. 지구로부터 약 1375광년 떨어진 이 성운은 말의 머리 모양을 한 독특한 구름과 함께, 탄생한 지 얼마 되지 않은 별들이 적갈색 가스와 먼지 속에서 보랏빛으로 빛나는 모습을 보여준다. 또한 유클리드는 160만 광년 떨어진 왜소은하 NGC 6822도 관찰했다. 이 작고 오래된 은하는 우리 은하와 같은 은하가 어떻게 형성되었는지에 대한 중요한 단서를 제공할 수 있다. 유클리드의 임무는 이제 시작 단계에 불과하지만, 이미 우리 주변 우주의 가까운 곳과 먼 곳에 있는 천체에 대한 풍부한 정보를 제공하며 중요한 역할을 하고 있다. 유럽우주국의 유클리드 프로젝트에서 활동하는 과학자 르네 로레이즈(René Laureijs)는 유클리드가 촬영한 최초의 이미지에 대해 인상 깊은 평가를 했다. 그는 "이전에는 본 적 없는, 이처럼 상세한 내용을 담은 천문학적 이미지"라고 평가하며, "기대했던 것보다 훨씬 더 아름답고 선명하다. 우리 주변 우주의 잘 알려진 지역에서도 이전에는 볼 수 없었던 많은 특징들을 포착하고 있다"고 말했다. 이 발언은 유클리드 프로젝트가 우주 관측 분야에서 새로운 장을 열고 있음을 시사한다. 한국, 제미니 천문대서 천체 첫 관측 최근 한국의 천문학 연구에서도 중요한 진전이 있었다. 한국천문연구원은 미국 하와이의 마우나케아 산에 위치한 제미니 천문대에 설치된 새로운 적외선 분광기 'IGRINS-2'를 사용하여, 먼 우주에 있는 천체를 처음으로 시험 관측하는 데 성공했다. 분광기란 천체 망원경에 들어온 빛을 파장별로 분해하는 장비로, 이를 이용하면 해당 천체가 어떤 성분으로 만들어졌고, 이동 속도는 얼마인지 등을 알 수 있다. 분광기는 천체 망원경을 통해 들어온 빛을 파장별로 분해하는 장치로, 이를 통해 천체의 구성 성분, 이동 속도 등을 파악할 수 있다. 'IGRINS-2'는 기존 장비보다 성능이 월등히 향상되어 있어, 별의 진화 과정 연구와 외계 행성 탐사의 수준을 한층 더 높일 것으로 기대되고 있다. 이러한 발전은 천문학 연구에 있어 큰 도약을 의미하며, 향후 우주에 대한 우리의 이해를 크게 심화시킬 것으로 전망된다.
-
- 산업
-
유럽우주국(ESA), 유클리드 망원경 촬영 첫 이미지 공개
-
-
암 조기 진단 위한 새로운 혈액 검사 개발
- 암을 조기 발견할 수 있는 저렴하고도 새로운 혈액 검사 방법 개발됐다. 대부분의 암은 증상이 나타나기 전까지 진단되지 않고, 증상이 나타난 시점에는 이미 질병이 널리 퍼져 치료가 어려운 경우가 많다. 바이오마커(biomarker)는 암을 감지하는 데 사용되지만, 일부는 증상이 나타난 후 혹은 특정 암 유형에만 감지가 가능하다. 그러나 이제 빠르고 저렴한 새로운 혈액 검사가 개발되어 증상이 나타나기 전에 암을 발견하는 것이 가능해졌다. 이로 인해 암 진단 방법에 혁신이 일어날 것으로 기대된다. 미국 매체 뉴아틀라스에 따르면, 뉴욕시 록펠러대학교의 연구팀은 다양한 암의 조기 발견 가능성을 보여주는 암세포에서 생산되는 주요 단백질을 검출하는 매우 정밀한 혈액 검사를 개발했다. 검사 비용은 약 3달러로 저렴한 비용으로 눈길을 끌었다. 'LINE-1 ORF1p'는 과학계에서 주목받고 있는 비교적 새로운 바이오마커 단백질이다. 바이오마커는 단백질이나 DNA, RNA, 대사 물질 등을 활용해 몸 안의 변화를 알아낼 수 있는 지표로 사용된다. 'LINE-1(Long interspersed element-1)'은 모든 인간 세포에서 발견되는 레트로트랜스포존(retrotransposon)으로 바이러스와 유사한 특성을 가지며, 게놈의 새로운 위치에 자신을 복사해 붙여넣는 메커니즘을 통해 복제된다. 레트로트랜스포존은 DNA의 일부분이 유전체 내의 한 곳에서 다른 곳으로 이동할 수 있는 전이인자(transposable element) 중 하나다. '오픈 리딩 프레임 1 프로틴(ORF1p)'은 식도암, 결장암, 폐암, 유방암, 전립선암, 난소암, 자궁암, 췌장암, 두부암, 머리와 목 등의 가장 흔하고 치명적인 암 중 많은 암에서 높은 수준으로 생산되는 단백질이다. 이번 연구의 공동 저자인 존 라카바(John LaCava) 박사는 "트랜스포존은 주로 정자와 난자, 배아 형성 과정에서 활성화되므로 트랜스포존이 비병리학적으로 활성화될 수도 있다. 하지만 그렇지 않은 경우, 이러한 '점핑 유전자'는 게놈 내에서 침묵 상태를 유지하며, 그 활동이 세포에 스트레스와 손상을 유발하기 때문이다"라고 말했다. 대부분의 경우 신체는 LINE-1을 통제한다. 하지만 LINE-1이 ORF1p를 생성하고 표출할 때, 이는 뭔가 잘못되었을 수 있는 신호일 수 있다. 라카바는 "LINE-1이 표출되지 않도록 하고 ORF1p를 생성하는 것을 방지하는 메커니즘이 있으므로 전사체를 제어할 수 없는 건강하지 못한 세포에 대한 대용으로 이 단백질을 사용할 수 있다"며 "건강한 사람의 혈액에서 ORF1p가 검출되어서는 안 된다"고 지적했다. 암세포는 질병 초기부터 ORF1p를 생산하는 것으로 알려져 있으므로 이를 정확하게 탐지하는 방법을 개발하는 것은 암을 초기 단계에서 발견할 수 있음을 의미한다. 연구팀은 혈장 내에서 ORF1p를 검출하기 위한 빠르고 저렴한 검사를 개발했다. ORF1p는 기존 임상 실험실 방법의 검출 한계보다 훨씬 낮은 농도에서 발견되기 때문에 연구팀은 소량의 혈청, 혈장 또는 뇌척수액에서 바이오마커를 측정하기 위한 미세분자 기반 검출 기술인 시모아(Simoa)를 사용했다. 이들은 라마에서 파생되고, 조작된 맞춤형 나노바디 시약을 사용하여 ORF1p 단백질을 검출하고 포획했다. 라카바는 "우리는 대장암에서 ORF1p와 다른 단백질의 분자적 연관성을 포착하고 설명하려는 임무의 일환으로 이러한 시약을 개발했다"고 말했다. 연구팀은 대부분의 대장암에 LINE-1 단백질이 풍부하게 발견된다는 것을 인지하고 있었으며, 이 단백질이 형성하는 상호 작용이 암의 성장에 도움을 주면서 정상 세포 기능의 조절을 방해할 수 있다고 추측했다. LINE-1 입자를 분리함으로써 이러한 상호 작용을 자세히 관찰할 수 있었다는 것이 라카바의 설명이다. 연구팀은 새롭게 개발된 분석 방법을 이용하여 다양한 암 유형을 가진 환자들과 암이 없는 것으로 알려진 400명 이상의 '건강한 대조군' 개인들을 조사했다. 대조군의 약 99%에서는 혈장 ORF1p가 검출되지 않았다. 하지만 ORF1p가 검출된 5명 중 가장 높은 수치를 보인 한 환자는 6개월 후에 진행성 전립선암이 발견됐다. 연구에 포함된 초기 단계의 8명의 난소암 환자 중 4명에서 ORF1p에 대해 양성 반응이 나타났는데, 이는 바이오마커가 초기 질병을 나타내는 지표가 될 수 있음을 시사한다. 전반적으로 연구팀은 이 검사가 난소암, 위식도암, 대장암 환자의 혈액 샘플에서 매우 정확하게 ORF1p를 검출한다는 사실을 발견했다. 검사 비용은 3달러(약 3940원) 미만이며, 결과는 2시간 이내에 나온다. 이 검사는 암 진단뿐만 아니라 암 치료의 효과성을 평가하는 데에도 유용하게 사용될 수 있다. 치료가 성공적일 경우, 환자의 ORF1p 수준이 감소해야 한다. 연구팀은 위식도암 치료를 받는 19명의 환자를 연구한 결과, 치료에 반응한 13명의 환자에서 ORF1p 수준이 검출 한계 아래로 떨어지는 것을 관찰했다. 연구팀은 이 검사가 조기 경보 시스템으로 일상적인 건강 관리에 통합될 것으로 기대하고 있다. 라카바는 "건강한 시기에는 ORF1p 수준을 측정하여 기준점을 설정할 수 있을 것"이라고 말했다. 그는 "이후 의사는 ORF1p 수준의 변화를 관찰할 것이며, 이는 건강 상태에 변화가 있음을 나타낼 수 있다. ORF1p 수준의 약간의 변동은 정상일 수 있지만, 지속적인 상승은 심층적인 조사가 필요한 이유가 될 있다"고 말했다. 더욱 광범위한 연구 대상 집단을 사용한 추가 연구는 이 검사의 효과를 더욱 확실하게 검증하고, 세포암 이외의 다른 암 유형을 감지할 수 있는지 확인하기 위해 필요하다. 또한 순환 중인 ORF1p의 정상 기준 수준이 무엇인지와 이 수준에 영향을 주는 요인들을 이해하기 위한 추가 연구가 요구된다. 한편, 한국의 아이엠비디엑스는 최첨단 유전자 분석 기술을 바탕으로 한 알파리퀴드 플랫폼을 개발해 활용 중이다. 이는 인공지능(AI) 초정밀 유전자 검사법을 활용해 암 조기진단부터 진행성 암의 재발 예측과 치료 프로파일링 서비스를 제공한다. 암세포에서 혈액으로 방출된 DNA 조각인 '순환 종양 DNA(ctDNA, circulating-tumor DNA)'를 검출하고 차세대 염기서열 분석(NGS)을 통해 DNA 정보를 스캔해 유전자변이를 분석한다. 이 간편한 혈액검사는 비침습적 검사법으로 출혈이나 감염 등의 부작용이나 방사선 노출 위험이 없다. 기존 검사로는 발견하기 어려운 1cm 미만의 작은 종양도 검출할 수 있는 것으로 알려졌다.
-
- 생활경제
-
암 조기 진단 위한 새로운 혈액 검사 개발
-
-
인도 슈퍼컴퓨터로 '일란성 쌍둥이' 우주 생성 실험 성공
- 과학자들이 우주의 탄생 비밀을 밝혀내기 위해 머리를 맞대고 있는 가운데, 인도에서 슈퍼컴퓨터를 이용해 우주 생성에 대한 시뮬레이션을 수행해 주목받고 있다. 인도의 위온(WION) 뉴스에 따르면, 최근 천문학자들은 슈퍼컴퓨터를 통해 우주의 탄생인 빅뱅부터 현재까지 이어지는 우주의 역사를 시뮬레이션하는 데 성공하여 기념비적인 성과를 이루었다고 보도했다. 천문학자들은 고성능 망원경으로 수집한 새로운 데이터를 활용하여 이 가상 우주를 실제 우주와 비교하는 것을 목표로 하고 있다. 이러한 비교는 때때로 관측 데이터가 기존의 우주론 표준 모델과 다를 때 중요한 통찰력을 제공한다고 위온은 설명했다. '플라밍고 프로젝트(Flamingo Project)'라는 이름의 이 연구는 물리학의 기본 법칙을 바탕으로 일반 물질, 암흑 물질, 암흑 에너지를 포함한 우주의 모든 구성 요소의 진화를 모델링하는 복잡한 계산을 포함하고 있다. 이 같은 시뮬레이션을 통해 세밀하게 구성된 가상의 은하계와 은하단이 생성됐다. 은하, 퀘이사, 별을 연구하는 유클리드 우주 망원경과 NASA의 제임스 웹 우주 망원경과 같은 첨단 장비로 수집한 데이터는 이 연구에 매우 중요한 역할을 하고 있다. 영국 더럼대학교의 플라밍고 프로젝트 공동 연구자인 카를로스 프렌크 교수는 우주론이 중요한 전환점에 있다고 언급했다. 그는 "강력한 망원경으로부터 얻은 새롭고 놀라운 데이터 중 일부가 우리의 이론적 예측과 일치하지 않는 것을 볼 수 있다"고 말했다. 이어서 "우주론의 표준 모델에 오류가 있거나 관측 데이터에 미묘한 선입견이 존재할 수 있지만, 우리의 초정밀 우주 시뮬레이션을 통해 이에 대한 답을 찾을 수 있을 것"이라고 덧붙였다. 중성미자와 우주 일반 물질 주목 과거의 우주 시뮬레이션은 주로 우주 구조의 핵심 요소인 차가운 암흑 물질에 초점을 맞추었다. 그러나 최근 천문학자들은 중성미자와 같이 드물게 상호 작용하는 작은 입자와 우주의 모든 물질 중 일반 물질이 차지하는 16%의 중요성을 강조하고 있다. 이 일반 물질은 지구상의 모든 물질을 포함한다. 우주의 진화를 전체적으로 이해하기 위해서는 이러한 요소들을 모두 고려해야 한다. 플라밍고 프로젝트는 우주 슈퍼컴퓨터 시뮬레이션을 전담하는 국제 천체물리학 연구팀인 버고 컨소시엄(Virgo Consortium)의 일환이다. 차세대 관측 자료 해석을 위한 전천후 대규모 구조 시뮬레이션의 약자로, 전천후 매핑(all-sky mapping)이 포함된 풀 하이드로 대규모 구조 시뮬레이션(full-hydro large-scale structure simulations)의 줄임말이다. 한국, '예미랩'서 우무 비밀 탐색 한편, 한국 강원도 정선군의 예미산 지하 1000미터에 위치한 세계적 수준의 고심도 지하실험시설 '예미랩'에서 우주의 비밀을 밝혀낼 가능성이 있다. 이곳에서는 '암흑물질'과 '중성미자' 연구 등이 진행되고 있다. 암흑물질은 우주의 주요 구성 요소로 여겨지며, 우주 에너지의 약 26%를 차지한다고 추정된다. 중성미자는 우주를 구성하는 기본입자다. 암흑물질의 존재와 중성미자의 특성을 규명하는 연구는 세계 물리학계에서 우선적으로 풀어야 할 과제로 꼽고 있다. 암흑물질과 중성미자로부터 나오는 신호를 포착하는 것은 극히 어려운 일이므로, 배경 잡음을 최소화할 수 있는 연구 환경이 필수적이다. 이러한 이유로 전 세계 연구그룹들은 지하 깊은 곳에 실험시설을 구축해 경쟁적으로 연구를 진행하고 있다. 예미랩은 이러한 연구를 위한 1000미터 지하의 실험시설을 갖추고 있다. 예미랩을 구축한 기초과학연구원(IBS) 지하실험 연구단은 양양실험실에서 사용한 실험장비를 이전해, 예미랩에서 중성미자 미방출 이중베타붕괴(AMoRE-II) 연구와 암흑물질 탐색(COSINE-200) 프로젝트를 진행할 계획이다. AMoRE-II 실험은 중성미자의 물리적 특성을 규명하기 위해 몰리브덴을 사용하는 연구이다. 이 실험은 양양에서 수행된 AMoRE-I에 이어서 진행되며, 예미랩에서는 몰리브덴 결정의 크기를 기존 6kg에서 200kg까지 확대하여 연구를 계속할 예정이다. COSINE-200은 현재까지 직접적으로 관측되지 않은 암흑물질을 탐색하는 프로젝트이다. 이 연구는 우주의 약 26%를 차지하는 암흑물질을 찾기 위해, 지구에 도달하는 암흑물질 입자와 COSINE 실험의 검출기 내 결정과의 충돌 과정을 통해 암흑물질의 존재 흔적을 찾는다.
-
- IT/바이오
-
인도 슈퍼컴퓨터로 '일란성 쌍둥이' 우주 생성 실험 성공
-
-
화성 지진, 운석 충돌 아닌 지각 내부 활동 때문
- 우주과학 전문 매체 머커닷더(Merkur.de)는 2022년 5월 4일 화성에서 발생한 규모 4.7의 지진은 미국 항공우주국(NASA)의 인사이트호(InSight)에 의해 포착되었으며, 화성에서 발견된 가장 강력한 지진 중 하나로 기록되었다고 최근 보도했다. 당시 NASA는 이 지진이 운석 충돌로 인해 발생했다는 가능성을 제기했다. 그러나 옥스퍼드대의 벤저민 페르난도 교수가 주도한 국제 연구팀은 다른 가설을 제기했다. 이 연구팀은 화성 표면을 철저히 조사한 결과, 지진을 일으킬 만한 충분한 운석 충돌 흔적을 찾지 못했다고 발표했다. 대신, 화성 지각 내부의 엄청난 압력 변화가 지진의 주 원인이라고 지목다. 연구팀은 전 세계 화성 탐사 프로젝트가 공동으로 화성 표면을 탐색했으나 강진을 유발할만한 운석 충돌 흔적을 찾지 못했다고 밝혔다. 대신 화성 내부에 응축돼 있던 엄청난 지각의 힘이 방출되면서 규모 4.7의 강진을 일으킨 것으로 결론지었다. 연구팀은 화성 지각 내부의 높은 압력이 지각의 얇은 구조와 관련이 있을 것으로 추정했다. 화성의 지각은 지구보다 얇고, 그로 인해 암석층이 더욱 활발하게 움직일 수 있다. 화성의 지각은 지구처럼 판이 움직이지는 않지만, 내부의 암석층은 다른 속도로 냉각과 수축 과정을 겪으면서 지진을 유발하는 압력을 쌓게 된다. 이러한 상황에서 충분한 압력이 축적되면, 암석층이 파괴되면서 지진이 발생하게 된다는 것이 연구팀의 결론이다. 이번에 발생한 화성 지진의 규모는 4.7로, 지구의 지진에 비해 상대적으로 약하지만 화성에서는 매우 강한 편에 속한다. 이 지진은 화성 북극 부근의 거대한 화산인 발행산에서 북서쪽으로 약 280km 떨어진 지점에서 발생했다. 인사이트호는 지진이 발생한 지점에서 대략 1000km 떨어진 곳에 있었으며, 다행히도 지진으로 인해 피해는 발생하지 않았다. 이번 연구는 화성의 지질학적 특성과 활동에 대한 중요한 통찰을 제공할 것으로 예상된다. 화성의 지진 활동 분석은 화성의 내부 구조와 진화 과정을 이해하는 데 도움이 될 것으로 보인다. 특히, 이번 연구는 화성 내부의 암석층이 상당히 활발하게 움직이고 있음을 보여주며, 이로 인해 화성의 지질 활동이 지구보다 활발할 수 있다는 가설을 제시했다. NASA는 이번 연구 결과를 통해 화성의 지질학적 활동에 대한 이해를 넓힐 수 있을 것으로 기대하며, 향후 인사이트호를 통해 화성의 지진 활동을 지속적으로 관측할 계획이다. 한편, 인사이트(InSight)는 NASA의 화성 지질 탐사 착륙선이다. 화성의 탄생과 태양계의 진화와 형성과정, 내부 온도, 지각활동, 화성의 열분포 등의 연구가 목적이다. 2018년 5월 5일 발사되어, 2018년 11월 26일 화성에 도착해 탐사 임무를 수행중이다. 주요 장비로는 HP3과 지진계 등을 장착했으며, SEIS로 화성 지표면 내부의 파동을 들여다 볼 수 있다. 달에도 아폴로 12호, 14, 15, 16호 미션 때 설치한 지각활동을 탐사하는 지진계가 있다. 현재까지 지구 외 다른 천체에서 관측된 가장 강한 지진은 달에서 1977년 관측된 것으로 우리나라 경주 지진과 비슷한 강도 5.5규모였다.
-
- 산업
-
화성 지진, 운석 충돌 아닌 지각 내부 활동 때문
-
-
제프 베이조스, 플로리다 부동산 시장 '큰손' 급부상
- 아마존의 창업자인 제프 베이조스(Jeff Bezos)가 플로리다에서 부동산 두 채를 연달아 구매해 큰손으로 등극했다. 최근 구입한 저택 2채의 구입 가격은 약 1억 4700만 달러(약 1986억원)에 이른다. 베이조스는 유럽에서 여름 휴가를 약혼자 로렌 산체스와 함께 요트 '코루'에서 보내고, '억만장자 벙커(Billionaire Bunker)'로 알려진 플로리다의 한 섬에서 새로운 부동산을 구입했다는 소식이 전해졌다. 부동산 전문 매체 '리얼 딜(The Real Deal)'에 따르면 베이조스가 이번에 구입한 부동산은 플로리다 인디언 크릭 바리어 섬에 있는 저택이다. 베이조스는 지난 6월 말 이 섬에서 첫 번째 주택을 약 6800만 달러(약 920억원)를 들여 구입했다. 폭스 비즈니스(Fox Business)에 따르면 베이조스가 새롭게 인디언 크릭에서 투자한 부동산의 가격은 약 7900만 달러(약 1069억원)로, 지난 6월 구입한 첫 번째 주택 바로 옆에 위치한다. 주택 정보 사이트 '질로(Zillow)' 목록을 살펴보면 이 주택은 1만9000㎡ 규모로 저택 내부에는 7개의 침실과 7개의 욕실이 있다. 이 저택은 1.8에이커(약 7300㎡)의 부지에 위치해 있고, 수영장과 와인 저장고, 그 외의 고급 편의 시설도 갖추고 있다. 부동산 회사 '더글러 엘리먼(Douglas Elliman Realtors)'이 이 주택의 매매에 관여했다는 정보가 있으며, 폭스 비즈니스는 회사와 베이조스 대변인에게 연락을 시도했으나 아직 답변을 받지 못했다고 전했다. 베이조스는 산체스와 약혼 사실이 알려진 지난 5월 인디언 크릭 섬에 새로운 집을 구입하기 시작한 것으로 전해졌다. 또한 그녀가 베조스의 요트에 타고 다이아몬드 반지를 착용한 모습이 포착되기도 했다. 리얼 딜의 보도에 따르면, 베이조스가 소유한 또 다른 주택은 약 9000㎡의 면적에 약 60년 전에 지어졌고, 리모델링을 통해 현재는 3개의 침실이 있다고 알려졌다. 이 부지는 2.8에이커(약 1만1331㎡) 크기로, 앞으로 새로운 건물을 지을 가능성도 있다고 한다. 포브스는 베이조스가 여러 해 동안 총 9채의 주택을 구입할 계획이며 보도했으며, 여기에는 최근 구입한 인디언 크릭의 주택은 포함되지 않았다고 한다. 포브스에 따르면 베이조스의 재산은 대략 1526억 6000만 달러(약 206조 5489억원)에 달하며, 이 중 상당한 부분은 그가 창립한 글로벌 전자상거래 기업 아마존(Amazon)에서 비롯되었다. 베이조스는 아마존의 주식 중 약 10%를 소유하고 있다. 2023년 10월 20일 현재, 아마존의 시가총액은 약 1조 3248억 달러(약 1792조 4544억원)로 추정되고 있다. 한편, 2023년 포브스 선정 대한민국 최고 부자는 MBK파트너스 김병주 회장이다. MBK파트너스는 260억달러의 자산을 운용한다. 김 회장의 순 자산은 전년 대비 20억 달러가 증가한 97억달러(약 12조 7000억원)을 기록했다. 2위는 삼성전자 이재용 회장으로 80억 달러였다. 이 회장은 3년 연속 2위 자리를 지키고 있다. 3위는 서정진 셀트리온 회장으로 57억달러였다.
-
- 경제
-
제프 베이조스, 플로리다 부동산 시장 '큰손' 급부상
-
-
롯데 인도, '러브&롯데'로 초코파이 감성 마케팅
- 롯데 인도가 자사의 대표 브랜드인 '롯데 초코파이'를 기념하는 최신 마케팅 캠페인 '사랑과 롯데(Love & Lotte)' 영상을 공개했다. 인도 매체 브랜드스토리즈(Brand Storyz)는 뭄바이 소재의 크리에이티브 부티크 컷더크랩(Cut the Crap)이 기획한 '롯데 초코파이' 캠페인을 소개했다. 브랜드와 소비자의 유대감을 더욱 강화하고 소비자의 마음에 더 가까이 다가가기 위해 기획됐다. 컷더크랩은 'Love & Lotte' 캠페인이 현대적인 용어와 감성을 사용해 소비자와 소통하는 내용을 창의적으로 구상했다고 설명했다. 이 캠페인에는 TV와 디지털 광고, 인쇄물, 옥외광고, 포장 혁신과 현장 활동이 포함됐다. 이와 함께 인기 있는 GEC와 소셜 미디어 플랫폼 전반에 걸쳐 진행됐다. 특히 어린이들의 순수한 애정과 사랑, 회사에 있는 엄마에게 잠시 쉬라고 말하는 아들, 할아버지와 할머니에게 파이를 달라고 하는 어린이 등을 등장시켰다. 애정을 나타내는 유쾌하고 따뜻한 언어로, 일상적 표현에서 '롯'이라는 단어를 '롯데'로 재치 있게 바꿨다. 예를 들어, "롯데 사랑해요", "롯데 보고 싶어요", "롯데 고마워요", "롯데 멋진 느낌", "롯데 얘기해요" 등의 표현은 초코파이 애호가와 연인 사이에 독특하고 사랑스러운 관계를 중의적으로 나타낸다. 이 창의적인 언어의 유희는 사랑과 관심을 표현하는 신선하고 유쾌한 방법을 제시하면서 인도 롯데의 헌신적인 고객 사이에서 유행될 것으로 보인다는 것이 컷더크랩의 설명이다. 밀란 와히(Milan Wahi) 롯데 인도 대표이사는 이번 행사에 대해 "주력 브랜드인 롯데 초코파이에 대한 새로운 마케팅 캠페인을 시작하게 되어 기쁘다"고 말했다. 와히 대표이사는 "우리의 일상은 삶을 아름답게 만드는 사랑과 보살핌의 순간들로 가득 차 있다"며 "우리는 이것의 본질을 롯데 초코파이의 달콤함으로 포착하고 축하하기를 원했다"고 설명했다. 그는 "카테고리 제작자로서 더 강력한 시장 리더십을 유지하며, 이 캠페인을 통해 목표 고객과 정서적으로 소통하고 그들의 작고 즐거운 순간의 일부가 되고자 한다"고 밝혔다. 컷더크랩이 구상한 이 캠페인은 세대를 초월해 가슴 따뜻한 사랑과 애정의 순간을 아름답게 포착하는 TV 광고 시리즈 4편으로 구성됐다. 이 중 두 편의 영상은 아이들 사이의 순수한 사랑과 애정의 교환을 묘사해 잔잔한 감동을 선사한다. 또 다른 영상은 어머니와 아들 사이의 가슴 아픈 대화를 감동적으로 담아내 그들 사이의 지속적인 유대감을 강조한다. 마지막으로 노부부 사이의 즐겁고 사랑스러운 농담을 포착해 시대를 초월한 사랑과 동반자 관계의 본질을 보여준다. 'Love & Lotte' 캠페인은 현재 유튜브, 인스타그램, 페이스북 등 소셜 미디어 플랫폼 외에도 다양한 ATL(아프리카TV), BTL(대면 커뮤니케이션) 채널을 통해 방송되며 폭넓은 인구층을 대상으로 진행되고 있다. 또한, 현재 대결을 펼치고 있는 'ICC 남자 크리켓 월드컵 2023' 경기 중에 디즈니+ 핫스타 OTT 플랫폼에서 방영될 예정으로, 게임 애호가를 축하하는 의미를 전달할 예정이다. 국제 크리켓 평의회(ICC)에서 주관하는 'ICC 남자 크리켓 월드컵 2023'은 지난 10월 5일부터 11월 19일까지 진행된다. 개최국인 인도를 포함해 뉴질랜드와 잉글랜드, 방글라데시 등 총 10개국이 본선에 진출했다.
-
- 생활경제
-
롯데 인도, '러브&롯데'로 초코파이 감성 마케팅
-
-
중동 최대 '우르미아' 호수, 소금 평원으로 변한 까닭은?
- 이란 북서부에 위치한 한때 중동 최대 호수인 '우르미아'가 기후변화로 현재 소금평원으로 변했다. 사진 왼쪽은 2020년 9월 6일, 사진 오른쪽은 2023년 9월 7일 랜드샛이 촬영한 우르미아 호수 모습. 사진=나사 이란 북서부에 위치한 '우르미아(Urmia)'는 터키와 이란 국경 가까이 있는 소금호수다. 한때 중동 최대 호수였지만, 현재는 대부분이 소금 평원으로 변했다. 미국 과학기술 전문매체 사이테크데일리(SciTechDaily)에 따르면 우르미아 호수는 1995년 이후 건조한 날씨 탓으로 호수가 마르기 시작해, 2023년 가을 호수의 90% 이상이 사라져 대부분 마른 염전으로 변했다. 지난 2020년 강수량이 증가하면서 일시적으로 호수의 수위가 높아졌지만, 몇 년 후 거의 완전히 마르면서 광활하고 건조한 소금 평원이 형성됐다. 2023년 9월7일 지상관측 위성 랜드샛(Landsat9)에 탑재된 OLI-2(Operational Land Imager-2)가 말라 버린 호수 바닥 이미지(위)를 포착했다. 이는 2020년 9월8일 랜드샛8의 OLI가 3년 전 찍은 이미지와 대조된다. 랜드샛은 미국 항공우주국 나사가 최초로 발사한 지상관측 위성이다. 당시 호수는 물로 거의 가득 차 있었고, 염분 퇴적물은 주로 호수 경계에서만 볼 수 있었다. 강수량이 평균 이상으로 많이 내려 물이 많이 유입되었으나, 그 후 환경이 건조해지면서 호수의 수위는 다시 떨어졌다. 우르미아 호수의 건조화는 장기적으로 진행됐다. 1995년에는 호수 수위가 최고점에 이르렀으나, 이후 20년 동안에 걸쳐 수위는 7미터(23피트) 이상 낮아져, 호수 면적의 약 90%가 사라졌다. 연속적인 가뭄과 농업 용수 사용 증가, 호수에 물을 공급하는 댐 건설 등이 주요 원인으로 지목되고 있다. 우르미아 호수의 수위가 낮아지는 것은 생태학적으로 인간 건강에 부정적인 영향을 미친다. 이 호수와 섬, 주변 습지는 다양한 생물의 서식지로 유네스코 생물권보전지역, 람사르습지와 국립공원으로 지정되어 있다. 또 이 지역은 플라밍고, 흰 펠리컨, 흰머리 오리 등 다양한 물새의 번식지이자 철새의 중간 기착지로 알려졌다. 하지만 호수 수위 감소로 염분 농도가 높아져 브라인 슈림프(무갑류) 개체수 감소와 대형 동물의 식량원 등에 문제가 생길 수 있다. 호수 수위 감소로 인해 노출된 호수 바닥의 먼지가 바람에 날리면서 공기 질 저하 위험도 제기됐다. 최근 연구에 따르면, 우르미아 호수의 수위가 낮아지면서 지역 주민들의 호흡기 건강에 영향을 미친다는 분석이 나왔다. 현재 호수의 수위와 관련해 기후, 물 사용량과 댐의 상대적 영향은 여전히 논쟁의 주제가 되고 있다. 우르미아 호수는 지난 2013년부터 시작된 10년간의 복원 프로그램으로 어느 정도 회복됐으나, 그 기간에도 폭우 등 기상 문제로 인해 프로그램의 효율성을 분석하기가 어려웠다. 일부 연구에서는 기후 요인이 호수의 회복을 막는 주요 원인이라고 지적했다. 한편, 지구의 극심한 기후변화로 프랑스의 몽블랑은 최근 2년 새 높이가 2m 줄어든 것으로 확인됐다. 몽블랑 측량위원회 드니 보렐 위원장은 지난 9월 중순 기준 몽블랑의 높이가 4805.59m로, 2년 전보다 2.22m 줄었다고 밝혔다. 측량위는 여름철 강수량 감소가 몽블랑 높이가 낮아진 원인으로 추측했다. 폭염이 점점 더 빈번해지고 있는 만큼, 지구 온난화가 산 정상에 미치는 장기적인 영향을 측정하기 위해 적극 나서고 있는 상황이다.
-
- 생활경제
-
중동 최대 '우르미아' 호수, 소금 평원으로 변한 까닭은?