검색
-
-
[먹을까? 말까?(116)] 플라스틱 생수병 속 '보이지 않는 위협'⋯연간 수만 개 미세입자 체내로 유입
- 플라스틱 생수병이 편리함 뒤에 '보이지 않는 위협'을 숨기고 있다는 연구 결과가 나왔다. 일상적으로 생수를 마실 경우, 매년 수만 개의 미세플라스틱과 나노플라스틱 입자가 인체로 유입될 수 있다는 경고다. 캐나다 콘코디아대학 연구진은 최근 국제 학술지 '유해물질저널(Journal of Hazardous Materials)'에 발표한 논문에서 "플라스틱 생수병을 장기간 사용할 경우, 인체 내에 축적되는 미세 입자가 만성 질환을 유발할 가능성이 높다"고 지적했다고 과학 기술 전문매체 사이테크데일리가 9월 30일(현지시간) 보도했다. 연구를 이끈 세라 사제디(Sarah Sajedi) 박사는 "플라스틱 생수는 비상 상황에서는 괜찮지만 일상적인 음용수로 사용하는 것은 바람직하지 않다"고 강조했다. 사제디 박사팀은 140여 편의 관련 논문을 분석한 결과, 일반적인 식수 섭취를 통해 인체에 유입되는 미세플라스틱은 연간 3만9000~5만2000개 수준으로 추정했다. 하지만 생수병에 의존하는 경우, 이보다 약 9만 개가 더 많은 입자를 섭취하는 것으로 나타났다. 이들 입자는 육안으로 식별이 불가능하다. 미세플라스틱은 1마이크로미터(㎛)에서 5㎜ 이하, 나노플라스틱은 1㎛보다 작다. 사제디 박사는 "저등급 플라스틱으로 제조된 생수병은 생산·운송·보관 과정에서 입자를 방출하며, 햇빛이나 온도 변화에 노출될 때 그 양이 급격히 늘어난다"고 설명했다. 문제는 이들 입자가 체내에 들어간 뒤의 경로다. 연구에 따르면 미세플라스틱은 생물학적 장벽을 통과해 혈류로 들어가며, 주요 장기까지 도달할 수 있다. 이런 입자는 만성 염증, 세포 산화 스트레스, 호르몬 교란, 생식 기능 저하, 신경 손상, 일부 암 등과 관련이 있는 것으로 보고됐다. 하지만 표준화된 측정 기법이 부족해 장기적 영향은 아직 완전히 규명되지 않았다. 사제디 박사는 "플라스틱 생수병 속 입자 문제는 급성 독성이 아니라 만성 독성의 문제"라며 "현재의 테스트 방식으로는 인체 내 미세입자 축적 정도를 제대로 파악하기 어렵다"고 밝혔다. 그는 또 "입자를 탐지하는 첨단 분석 장비는 고가이기 때문에, 저소득 국가나 개발도상국에서는 관련 연구조차 어렵다"고 덧붙였다. 이에 따라 그는 정부와 기업의 제도적 대응보다 더 중요한 것은 '소비자 교육'이라고 강조했다. 각국이 일회용 비닐봉투나 빨대 규제에 나서고 있지만, 일회용 생수병은 여전히 사각지대에 놓여 있다는 것이다. "시민들이 문제를 인식하고, 생수 대신 수돗물이나 재사용 가능한 물병을 활용하는 습관을 들이는 것이 최선의 예방책"이라고 말했다. 이번 논문은 「일회용 플라스틱 생수병 속 나노·미세플라스틱의 만성 건강위험: 종합 검토(Unveiling the hidden chronic health risks of nano- and microplastics in single-use plastic water bottles)」라는 제목으로 게재됐다. 연구에는 사제디 박사 외에 천쟝 안(Chunjiang An), 즈 천(Zhi Chen) 연구자가 공동 참여했다. 환경 전문가들은 "미세플라스틱 문제는 더 이상 해양 오염이나 생태계 파괴에 국한되지 않는다"며 "인류의 식생활과 건강에 직결되는 '만성 오염'으로 접근해야 할 시점"이라고 지적했다. 플라스틱 생수병의 편의는 우리의 건강과 맞바꾸는 대가일 수 있다. '깨끗한 물'이라 믿었던 한 병의 생수가, 사실상 인체 내 미세 플라스틱 축적의 출발점이 될 수 있다는 점에서 경각심이 필요하다.
-
- 생활경제
-
[먹을까? 말까?(116)] 플라스틱 생수병 속 '보이지 않는 위협'⋯연간 수만 개 미세입자 체내로 유입
-
-
[ESCG] 미세플라스틱 섭취를 줄이는 방법은?
- 눈에 잘 보이지 않는 아주 작은 입자인 미세플라스틱을 생활속 실천으로 인체 흡수를 줄일 수 있다는 연구 결과가 나왔다. 5mm미만인 미세플라스틱과 1~1000나노미터 크기의 입자인 나노플라스틱은 수돗물, 조리 도구, 포장재는 물론 계란과 고기, 채소에 이르기까지 다양한 경로를 통해 인체로 유입된다. 최근 연구들은 이러한 입자들의 실제 노출 수준이 예상보다 훨씬 크다는 사실을 보여주고 있다. 전문가들은 "완전히 피할 수는 없지만, 생활 속 작은 실천으로 섭취량을 줄일 수 있다"고 강조한다. 워싱턴 대학과 시애틀 어린이 연구소의 소아과 교수이자 환경 및 직업 건강 과학 겸임 교수인 쉴라 사티아나라야나는 BBC와의 인터뷰에서 "집 안에는 정말 쉽게 해결할 수 있는 쉬운 문제들이 많다"고 말했다. 음식 속 스며든 미세플라스틱 입자들 미세플라스틱은 과일과 채소, 꿀, 빵, 유제품, 달걀, 생선과 육류에 이르기까지 거의 모든 식품에서 발견된다. 식물은 토양을 통해, 가축은 사료와 물을 통해 이를 흡수한다. 가공 단계에서도 플라스틱 설비와 포장재로 인해 추가 오염이 발생한다. 109개국을 대상으로 한 한 연구에 따르면, 2018년 사람들이 일반적으로 소비한 이러한 플라스틱의 양은 1990년보다 6배 이상 많았다. 사티아나라야나 교수는 "이전에 산업 지역이었던 땅에 농사를 짓고 토양이 오염되면, 그 작물들이 토양에 오염 물질을 축적할 가능성이 있다"고 지적했다. 작물을 수확한 후에는 가공 과정에서 오염될 가능성이 훨씬 더 커진다. 그는 "공장에서는 효율성을 높이고 제품 처리량을 높이기 위해 엄청난 양의 플라스틱을 사용한다"고 말했다. 일부 식품은 세척을 통해 오염도를 낮출 수 있다. 호주 연구에 따르면 쌀 1인분에는 평균 3~4mg, 즉석 조리 쌀에는 최대 13mg의 미세플라스틱이 포함돼 있었으나, 조리 전 쌀을 헹구면 20~40%가량 줄일 수 있었다. 고기와 생선도 철저한 세척으로 일정 부분 미세플라스틱 함유량을 감소시킬 수 있다. 반면 소금처럼 가공 과정에서 이미 오염된 식품은 세척이 불가능하다. 물과 음료, 숨은 위험 병에 든 생수는 또 다른 주요 경로다. 단순히 뚜껑을 열고 닫는 과정에서 리터당 평균 553개의 미세플라스틱이 생성된다는 연구도 있다. 수돗물 역시 영국, 미국, 일본 등 여러 나라에서 조사한 모든 시료에서 미세플라스틱이 검출됐다. 물론 수돗물 속의 미세플라스틱은 끓여서 마시면 약 80% 정도 걸러낼 수 있다는 연구 결과도 있다. 뉴욕주 컬럼비아 대학 연구원들이 수돗물을 끓이면 물에 존재하는 가장 일반적인 세 가지 플라스틱 화합물(폴리스티렌, 폴리에틸렌, 폴리프로필렌)의 최소 80% 이상을 분해할 수 있음을 밝혀냈다. 그럼에도 전문가들은 안전이 보장된 지역에서는 생수보다 수돗물을 마시고, 정수기를 활용할 것을 권장한다. 활성탄 필터만으로도 최대 90%까지 걸러낼 수 있다. 그러나 여기에 플라스틱 성분이 들어간 티백을 사용하면 상황은 달라진다. 티백 하나에서 수십억 개의 미세·나노플라스틱이 방출되기 때문이다. 조리·보관 과정에서 미세플라스틱 노출 포장재와 주방 도구도 빼놓을 수 없다. 플라스틱 포장을 뜯는 행위만으로도 다량의 입자가 발생하며, 재사용 용기는 세척 횟수가 늘어날수록 방출량이 증가한다. 도마와 손상된 코팅 팬, 믹서기와 볼 등에서도 사용 과정에서 수백에서 수백만 개의 입자가 발생한다. 특히 열은 방출을 가속한다. 한 연구에서는 플라스틱 용기를 전자레인지에 3분간 가열했을 때, 단 1㎠의 표면에서 최대 422만 개의 미세플라스틱과 21억 개의 나노플라스틱이 방출되는 것으로 나타났다. 냉장 보관에서도 수개월에 걸쳐 수백만~수십억 개의 입자가 흘러나올 수 있다. 뜨거운 음료를 일회용 플라스틱 컵에 담는 것도 위험하다. 섭씨 50도의 물을 담았을 때 가장 많은 미세플라스틱이 검출됐으며, 주 1~2회 사용만으로도 연간 최대 7만3000여 개의 입자를 섭취할 수 있다는 추정치가 제시됐다. 소금, 지방, 산, 열은 플라스틱을 더 빨리 분해한다. 예를 들어 소금물이 담긴 플라스틱 볼은 맹물보다 세 배 많은 입자를 방출했다. 또한 기름진 음식일수록 플라스틱에서 용출된 첨가제가 더 많이 검출됐다. 설거지 과정서도 노출 식사 후 설거지 과정에서도 미세플라스틱은 새어 나온다. 일회용 주방 스펀지는 마모될수록 최대 그램당 650만 개의 미세플라스틱 입자를 방출할 수 있으며, 세제와 합쳐 사용하면 방출량은 더 늘어난다. 스펀지의 단단한 면은 특히 고위험군으로 지목된다. 전문가들은 △쌀·채소·생선 등은 조리 전 충분히 세척할 것, △생수 대신 수돗물과 정수기를 활용할 것, △플라스틱 포장재와 일회용 용기 사용을 최소화할 것, △손상된 조리 도구와 도마는 교체할 것을 권고한다. 개인 실천 넘어 구조적 대응 필요 전문가들은 "플라스틱은 저렴하고 유용하지만 과잉 사용이 문제”라며 “개인의 습관 변화와 더불어, 전 세계적인 플라스틱 감축 노력과 정책적 대응이 병행돼야 한다"고 강조한다. 세계자연기금(WWF)은 "환경 속 플라스틱 파편을 90% 줄이면 인체 섭취량도 절반으로 줄일 수 있다"고 분석한다. 보이지 않는 미세플라스틱은 이미 우리의 몸속으로 들어오고 있다. 그러나 개인의 작은 실천과 사회적 변화를 통해 그 양을 줄여나간다면, 인류는 보다 안전하고 건강한 식탁을 지켜낼 수 있을 것이다.
-
- ESGC
-
[ESCG] 미세플라스틱 섭취를 줄이는 방법은?
-
-
[신소재 신기술(196)] 차세대 나노 스위치 개발⋯전자기기 발열 줄여 반도체 효율 혁신 기대
- 전자기기 발열 문제를 근본적으로 줄일 수 있는 차세대 나노공학 스위치가 개발돼 반도체 및 전자산업 전반에 큰 파급력을 미칠 전망이다. 미국 미시간대 연구팀은 실온에서 '엑시톤(exciton·전자와 정공이 결합한 중성 입자)'의 흐름을 제어하는 최초의 트랜지스터형 나노 스위치를 제작했다고 미시간엔지니어링뉴스와 웹사이트 Phys.org, 과학 전문매체 인터레스팅엔지니어링 등이 전했다. 해당 연구는 나노과학회 대표 국제학술지 ACS Nano(미국화학회)에 발표했다. 엑시톤은 전하 없이 에너지를 운반하는 양자 준입자이다. 다시 말하면 엑시톤은 빛이 반도체 내 전자를 자극하여 양전하를 띤 정공을 남길 때 형성된다. 전자와 정공은 한 쌍으로 함께 이동하며 중성 에너지 패킷을 형성한다. 연구팀이 개발한 엑시톤 나노스위치는 궁극적으로 기존 전자기기를 엑시토닉스(excitonics)로 대체하는 길을 열 수 있다. 연구팀은 텅스텐 다이셀레나이드(WSe₂) 단원자층을 이산화규소(SiO₂) 기반 나노 리지 구조와 결합한 '나노공학 광-엑시토닉(NEO) 장치'를 통해 기존 전자 스위치 대비 열 손실을 66% 줄였다. 또한 상온에서 19데시벨(dB) 이상의 온·오프 비율을 달성, 현존 상용 최고 수준을 넘어서는 성능을 입증했다. 엑시톤은 전하를 띠지 않기 때문에 전하 이동에 따른 저항과 발열을 최소화해 차세대 반도체·전자소자의 에너지 효율을 획기적으로 높일 수 있는 대안으로 주목받아 왔다. 그러나 제어가 어렵다는 한계로 상용화가 지연돼 왔다. 이번 연구는 빛을 방출하지 않는 '다크 엑시톤'과의 상호작용을 활용해 엑시톤 이동 거리를 최대 400%까지 늘리고 방향성을 확보하는 데 성공했다. 엑시톤은 이미 태양 전지와 유기 LED를 가능하게 하고, 식물의 광합성을 촉진하는 등 여러 기술에서 중요한 역할을 하고 있다. 업계 전문가들은 이번 성과가 반도체 집적도 한계와 전력 효율 문제를 동시에 해소할 수 있는 '게임체인저'가 될 수 있다고 평가했다. 고성능 연산용 반도체, 모바일 기기, 데이터센터 등 전력 소모와 발열 억제가 핵심인 산업 분야에 곧바로 응용될 수 있다는 것이다. 연구진은 "맞춤형 구조 설계를 통해 엑시톤 수송을 제어할 수 있음을 입증했다"며 "전자와 광자의 장점을 결합한 차세대 소자 상용화를 앞당기는 기반 기술이 될 것"이라고 설명했다.
-
- IT/바이오
-
[신소재 신기술(196)] 차세대 나노 스위치 개발⋯전자기기 발열 줄여 반도체 효율 혁신 기대
-
-
정부, 쌀값 급등에 정부양곡 2만5천t 추가 방출
- 농림축산식품부가 쌀값 급등세 완화를 위해 정부양곡 2만5000t을 추가 공급한다. 12일 농식품부에 따르면 최근 산지 쌀값은 20㎏당 5만5810원으로 직전 조사보다 1180원 오르며 80㎏ 한 가마 가격이 22만원을 넘어섰다. 소매가격 역시 20㎏당 평균 6만1000원을 웃돌아 작년보다 20% 비싼 수준이다. 정부는 올해 조생종 수확이 잦은 비로 늦어져 산지 유통업체의 원료곡 확보에 차질이 빚어지고 있다고 보고, 10월 중순 햅쌀 본격 출하 전까지 수급 공백을 메우기 위한 조치로 추가 공급을 결정했다. 공급은 대여 방식으로 이뤄지며, 업체들은 농협경제지주 공지를 통해 신청하면 오는 19일부터 배정된다. 공급받은 벼는 쌀로만 판매 가능하며 내년 3월까지 정부에 반납해야 한다. [미니해설] 쌀 1가마니, 4년 만에 '22만원' 돌파 정부가 다시 쌀시장 안정화 카드를 꺼냈다. 최근 쌀값이 가파르게 오르면서 소비자 부담과 산지 유통업체의 원료곡 확보난이 동시에 심화되자 농림축산식품부는 12일 정부양곡 2만5천t을 추가 공급한다고 발표했다. 통계청 조사에 따르면 지난 5일 기준 산지 쌀값은 20㎏당 5만5천810원으로, 직전 조사일인 지난달 25일보다 1천180원 상승했다. 이로써 80㎏ 한 가마 가격이 22만원을 넘어선 것은 거의 4년 만이다. 소매가격도 20㎏당 평균 6만1천원 수준으로, 지난해보다 약 20% 비싼 상황이다. 이 같은 상승세는 서민 가계 부담을 직접적으로 키우고 있다. 공급 지연과 수요 증가가 맞물린 결과 농식품부는 올해 조생종 수확 시기에 잦은 비가 겹치면서 출하가 늦어진 데다, 산지 유통업체들이 구곡(지난해 수확한 쌀)을 대체 원료로 확보하려 하면서 재고 부족 현상이 예상보다 심각해졌다고 설명했다. 지난 8월 말 공급된 정부양곡 3만t도 2주 만에 절반이 소진됐으며, 남은 물량 역시 곧 바닥날 것으로 관측된다. 대여 방식으로 19일부터 공급 이번에 추가 공급되는 2만5000t은 대여 형식으로 배정된다. 업체들은 농협경제지주 웹사이트를 통해 신청할 수 있으며, 지난해 쌀 판매량 비중에 따라 물량이 배분된다. 공급은 19일부터 시작된다. 단, 공급받은 벼는 재판매가 제한되고 반드시 도정해 쌀로 판매해야 하며, 내년 3월까지 정부 창고에 동일 물량을 반납해야 한다. 반납가격은 올해 8월 평균 산지 쌀값과 수확기 가격, 도정수율 등을 고려해 추후 확정된다. 김종구 농식품부 식량정책실장은 "이번 추가 공급이 산지 유통업체의 원료곡 확보 부담을 덜어주고, 수확기 쌀값 안정과 농업인 소득 보전에 기여할 것"이라고 밝혔다. 즉, 농가에는 가격 급등을 억제하면서 판로 불안을 줄이고, 소비자에게는 쌀값 급등에 따른 생활비 압박을 완화하겠다는 복안이다. 반복되는 수급 불안, 근본 대책은? 하지만 전문가들은 이번 조치가 단기 처방에 그칠 수 있다고 지적했다. 최근 몇 년간 쌀 시장은 생산량 변동, 기후 영향, 소비 감소와 같은 구조적 요인이 복합적으로 작용해 가격 불안을 반복해 왔다. 특히 올해는 기후 악재로 조생종 수확이 늦어진 데다, 국제 곡물 가격 불안도 소비자 심리에 영향을 준 것으로 분석된다. 정부가 내놓은 대책은 공급 공백기를 메우는 성격이 강하다. 그러나 근본적으로는 생산 조절, 재고 관리, 유통 구조 개선 등 종합적인 대응이 병행되어야 한다는 지적이다. 또한 장기적으로는 소비 트렌드 변화에 맞춘 쌀 소비 촉진, 가공용 수요 확대 등 내수 기반 강화가 필요하다는 목소리도 크다. 농식품부는 10월 중순 중만생종 햅쌀이 본격 출하되면 공급난이 상당 부분 해소될 것으로 내다보고 있다. 그러나 주요 생산지의 기상 여건, 국제 곡물가 추이, 소비 회복세 등이 변수로 작용할 수 있다. 만약 쌀값 상승세가 다시 가팔라질 경우, 추가적인 정부양곡 방출이나 수급 안정화 조치가 뒤따를 가능성도 배제할 수 없다. 쌀은 여전히 한국인의 식탁에서 핵심적인 주식이다. 이번 정부 조치는 단기적으로 가격 급등을 완화할 수 있겠지만, 장기적이고 구조적인 대책이 뒷받침되지 않는다면 쌀 시장의 불안정성은 반복될 수밖에 없다.
-
- 생활경제
-
정부, 쌀값 급등에 정부양곡 2만5천t 추가 방출
-
-
[퓨처 Eyes(101) ]브룩헤이븐 연구소 '빅뱅 머신', 초기 우주 탐사 준비 완료
- 우주 탄생 직후의 '뜨거운 혼돈' 상태를 재현하는 '빅뱅 머신'이 본격적인 탐사를 위한 채비를 마쳤다. 미국 브룩헤이븐 국립연구소의 차세대 검출기 'sPHENIX'가 성능을 검증하는 핵심 시험을 성공적으로 통과하며, 태초의 물질로 알려진 '쿼크-글루온 플라스마(QGP)'의 특성을 정밀하게 재구성할 수 있음을 입증했다. '고에너지 물리학 저널' 최신호에 발표된 논문에 따르면, sPHENIX는 빛의 속도로 금 이온을 충돌시켰을 때 방출되는 입자의 수와 에너지를 정확히 측정하는 데 성공했다. 이 시험의 성공은 sPHENIX가 본격적인 과학 연구에 돌입할 준비가 됐음을 의미한다. '표준 촛불' 시험 통과…탐사 능력 입증 이번에 통과한 시험은 물리학에서 '표준 촛불(Standard Candle)' 테스트로 불린다. 이는 검출기의 정확도를 확인하는 매우 중요한 과정이다. 예를 들어, 우리는 100와트(W) 전구가 항상 같은 밝기를 낸다는 사실을 알고 있다. 만약 멀리 있는 100W 전구가 희미하게 보인다면, 우리는 그 밝기를 기준으로 거리를 계산할 수 있다. 이처럼 '표준 촛불' 시험은 이미 결과가 잘 알려진 입자 충돌을 일으켜, 검출기가 그 결과를 얼마나 정확하게 측정하는지 확인하는 작업이다. 이 시험을 통과해야만 앞으로 미지의 현상을 관측한 데이터 역시 신뢰할 수 있게 된다. 2024년 가을 3주 동안 진행된 이번 시험에서, 연구진은 금(金) 원자에서 전자를 떼어낸 '이온'을 빛의 속도에 가깝게 가속해 충돌시켰다. 그 결과, 이온들이 정면으로 충돌했을 때가 스치듯 비껴간 경우보다 10배 더 많은 하전 입자(전기적 성질을 띤 입자)를 생성했으며, 이 입자들의 에너지 또한 10배 더 강력하다는 예측된 결과를 정확히 측정해냈다. sPHENIX 공동연구단의 일원이자 전 대변인인 군터 롤런드 MIT 물리학과 교수는 "이는 검출기가 설계된 대로 작동한다는 것을 보여준다"며 "마치 10년간 만든 새 망원경을 우주로 보내 첫 사진을 성공적으로 찍은 것과 같다. 완전히 새로운 발견은 아닐지라도, 이제 새로운 과학을 시작할 준비가 됐음을 증명한 것"이라고 평가했다. 이번 논문의 주 저자인 하오런 정 MIT 물리학과 대학원생은 "이 강력한 기반 위에서 sPHENIX는 쿼크-글루온 플라스마 연구를 더 높은 정밀도와 해상도로 발전시킬 것"이라고 덧붙였다. 논문의 저자들은 모두 sPHENIX 공동연구단 소속으로, 이 연구단은 롤런드 교수와 하오렌 정(Hao-Ren Jheng) 연구원을 비롯해 MIT 베이츠 연구 및 공학 센터의 물리학자들을 포함, 전 세계 여러 기관의 과학자 300명 이상으로 구성되어 있다. 우주 태초의 '완벽한 유체'를 찾아서 연구진이 찾으려는 쿼크-글루온 플라스마(QGP)는 대체 무엇일까? 우리 몸을 포함한 세상의 모든 물질은 원자로, 원자는 양성자와 중성자로, 그리고 양성자와 중성자는 더 작은 '쿼크(quark)'라는 기본 입자로 이루어져 있다. 마치 레고 블록(쿼크)들이 모여 장난감 자동차(양성자, 중성자)를 만드는 것과 같다. 이때 '글루온(gluon)'이라는 입자가 강력한 접착제처럼 쿼크들을 단단히 붙잡고 있어 평소에는 절대 떨어지지 않는다. 하지만 우주가 탄생한 빅뱅 직후 수 마이크로초(100만분의 1초) 동안은 상상할 수 없는 초고온·초고압 상태였다. 초기 우주 환경에서는 강력한 접착제도 소용이 없어져, 쿼크와 글루온이 분리된 채 마치 뜨거운 수프(원시 수프)처럼 자유롭게 떠다녔을 것으로 추정된다. 바로 이 상태가 QGP다. QGP가 생성되더라도 그 지속 시간은 단지 10⁻²²초, 즉 약 100분의 1섹스틸리언(1/10²²)초에 불과하다. 이 원시 수프는 약 100분의 1섹스틸리언(1/10²²)초라는 눈 깜짝할 사이보다도 훨씬 짧은 시간 존재하다가, 우주가 빠르게 냉각되면서 다시 뭉쳐 오늘날의 양성자와 중성자를 만들었다. 특히 QGP는 섭씨 수조 도에 달하는 상태에서 점성이 거의 없는 '완벽한 유체(perfect fluid)'처럼 행동했을 것으로 보인다. 이는 물처럼 흐르는 액체라기보다, 수천 마리의 물고기 떼가 한 몸처럼 완벽하게 움직이듯 모든 입자가 저항 없이 일사불란하게 움직이는 상태를 의미한다. 롤런드 교수는 "QGP 자체는 결코 볼 수 없고, 그것이 붕괴하며 남긴 입자 형태의 '재'만 볼 수 있다"면서 "sPHENIX의 목표는 이 입자들을 측정해 순식간에 사라진 QGP의 특성을 재구성하는 것"이라고 설명했다. 무게 1000톤 '빅뱅 머신'의 압도적 성능 이처럼 까다로운 임무를 위해 sPHENIX는 2층집 크기에 무게 1000톤에 달하는 거대한 규모로 제작됐다. 현재는 퇴역한 기존 PHENIX 검출기를 대체해 2021년 설치됐으며, 초당 1만5000건의 입자 충돌을 포착하고 그 잔해를 3차원으로 추적할 수 있다. 검출기의 여러 시스템이 함께 작동하며 sPHENIX는 단일 충돌에서 생성된 입자 폭발을 추적하는 거대한 3D 카메라 역할을 한다. 특히 MIT 베이츠 연구 및 공학 센터가 제작한 핵심 부품 'MVTX'는 측정의 정밀도를 획기적으로 높였다. 25년 여정의 마침표…새로운 시작 예고 현재 sPHENIX는 25년간 우주 초기 비밀을 탐사해 온 상대론적 중이온 충돌기(RHIC)의 마지막 임무를 위한 데이터를 수집하고 있다. RHIC는 이번 가동을 끝으로 운영을 종료하며, 그 뒤를 이어 차세대 '전자-이온 충돌기(Electric-Ion Collider, EIC)'가 임무를 이어받게 된다. MIT 박사후연구원 캐머런 딘은 "sPHENIX의 재미는 이제 시작"이라며 "모든 데이터가 확보되면, 우리는 QGP의 밀도나 서로 다른 입자를 묶는 에너지의 비밀을 풀어줄 '10억분의 1' 확률의 극히 드문 현상을 탐색할 수 있을 것"이라고 기대를 밝혔다. 이 연구는 미국 에너지부 과학실과 국립과학재단의 일부 지원을 받아 수행됐다.
-
- 포커스온
-
[퓨처 Eyes(101) ]브룩헤이븐 연구소 '빅뱅 머신', 초기 우주 탐사 준비 완료
-
-
[우주의 속삭임(139)] 전례 없는 감마선 폭발, 미지의 블랙홀 가능성 제기
- 우주에서 지금까지 관측된 적 없는 이례적인 감마선 폭발 현상이 포착됐다. 은하계를 넘어 발생한 이번 폭발은 하루 동안 수차례 반복적으로 관측돼, 기존의 천체 물리학적 설명으로는 온전히 해석할 수 없는 사례로 기록됐다고 스페이스닷컴과 웹사이트 Phys.org 등 다수 외신이 9일(현지시간) 보도했다. 이번 연구 성과는 영국 더블린대학교(University College Dublin, UCD) 물리학부 안토니오 마르틴-카리요 박사 연구팀이 주도했으며, 국제학술지 천체물리학 저널 레터스(The Astrophysical Journal Letters)에 게재됐다. 연구팀은 유럽남방천문대(ESO)의 초거대망원경(VLT)을 활용해 이 현상을 포착했다. 마르틴-카리요 박사는 "이번 사건은 지난 50년간의 감마선 폭발 관측사에서 유례가 없는 사례"라며 "대개 감마선 폭발은 별의 격변적 파괴로 인해 한 번 발생한 뒤 소멸되지만, 이번에는 강력한 폭발이 반복적으로 나타났고, 주기성을 띠는 듯한 양상까지 보여 학계에 큰 의문을 던졌다"고 설명했다. 감마선 폭발(Gamma-Ray Burst, GRB)은 우주에서 관측되는 가장 강력한 폭발 현상 가운데 하나로, 짧은 시간 동안 엄청난 양의 감마선을 방출하는 천체 현상을 말한다. 다시 말하면 GRB는 거대한 별이 수명을 다해 중력 붕괴를 겪어 블랙홀이나 중성자 별이 되거나, 어떤 하나의 별이 블랙홀에 너무 가까이 다가가서 소위 ' 조석파괴 사건(TDE)'으로 인해 산산이 조각날 때 발생하는 것으로 여겨진다. 연구진은 이번 현상이 두 가지 가설로 설명될 수 있다고 분석했다. 하나는 태양 질량의 약 40배에 달하는 거대 별이 특수한 방식으로 붕괴해 중심부가 장시간 에너지를 공급하는 경우다. 또 다른 가능성은 블랙홀이 항성을 찢어내는 '조석파괴 사건(TDE)'이다. 다만 기존의 TDE와는 달리, 이번 사례를 설명하려면 매우 특이한 별이 '중간질량 블랙홀'과 같은 이례적 천체에 의해 파괴됐을 가능성을 고려해야 한다는 것이다. 이는 관측 사상 처음 제기되는 시나리오다. 이번 폭발, 'GRB 250702B'로 명명된 사건은 일반적인 감마선 폭발이 수 밀리초에서 수 분간 지속되는 것과 달리, 무려 하루가량 이어졌다. 이는 "대부분의 감마선 폭발보다 100~1000배 더 긴 지속 시간"이라고 네덜란드 라드바우드대학교의 앤드루 레반 교수가 밝혔다. 이 현상은 7월 2일 미국 항공우주국(NASA)의 페르미 감마선 우주망원경과 중국과 유럽이 공동 운영하는 '아인슈타인 탐사선'이 잇따라 신호를 포착하면서 처음 알려졌다. 이후 ESO 연구진은 초거대망원경의 HAWK-I 카메라를 통해 폭발의 정확한 위치를 특정했으며, 허블 우주망원경 관측으로 외부 은하 기원임이 확인됐다. 이는 사건의 위력을 기존 추정보다 훨씬 강력한 것으로 재평가하게 하는 결정적 단서가 됐다. 현재 연구진은 제임스 웹 우주망원경(JWST)과 칠레 북부 아타카마 사막의 파라날 천문대에 위치한 VLT의 분광기(X-shooter) 등 첨단 장비를 동원해 폭발 이후의 잔광을 추적 관측 중이다. 이를 통해 정확한 거리와 에너지를 산출하고 물리적 모델링을 정교화할 계획이다. 마르틴-카리요 박사는 "이번 사건의 발생 원인이 무엇인지 단정하기는 어렵지만, 이번 연구로 우리는 우주에서 가장 드문 천체 현상 중 하나를 이해하는 데 한 걸음 더 다가섰다"고 강조했다. 이번 발견은 중간질량 블랙홀의 존재 가능성을 비롯해 감마선 폭발 연구의 새로운 지평을 열 수 있는 계기로 평가된다.
-
- 포커스온
-
[우주의 속삭임(139)] 전례 없는 감마선 폭발, 미지의 블랙홀 가능성 제기
-
-
[신소재 신기술(195)] 알루미늄보다 150% 강력한 붕소 연료 개발⋯우주 탐사 효율 혁신 기대
- 우주 탐사의 새로운 전기가 될 수 있는 차세대 로켓 연료가 등장했다. 미국 올버니대(University of Albany) 연구진이 기존 알루미늄 기반 연료보다 에너지 밀도가 150% 높은 붕소 기반 화합물을 합성하는 데 성공했다고 유니버스 스페이스텍과 에너지 리포트 등 다수 외신이 전했다. 붕소의 잠재력 붕소는 오래전부터 높은 에너지 밀도로 주목받아 왔다. 일반 탄화수소 연료의 에너지 밀도(30.7~36.6kJ/㎤)를 크게 웃도는 136.4kJ/㎤를 기록하며 로켓 추진체 후보군으로 거론돼 왔다. 이번에 연구진이 주목한 화합물은 '망간 다이보라이드(MnB₂)'다. 불안정한 구조와 비대칭성이 결합해 폭발적인 에너지 방출 가능성을 갖춘 것으로 분석됐다. 구조적 특성과 합성 방법 연구진은 MnB₂의 원자 배열을 컴퓨터 모델로 분석한 결과, 육각 격자가 비대칭적으로 배열된 구조가 스프링처럼 에너지를 저장하는 효과를 낸다는 사실을 확인했다. 불이 붙으면 긴장이 풀리듯 강력한 에너지가 방출되는 것이다. 연구팀은 섭씨 3,000도의 전류를 가하는 '아크 멜터(arc melter)' 장비로 망간과 붕소 분말을 합성해 이 독특한 구조를 구현했다. 이 화합물은 같은 질량 기준으로 알루미늄보다 20% 더 많은 에너지를, 같은 부피 기준으로는 150% 더 높은 에너지를 내는 것으로 확인됐다. 이 물질은 보관시 안전성을 갖추고 있어 점화제(등유 등)가 있어야만 연소가 시작된다. 우주 탐사와 산업적 의미 MnB₂가 상용화될 경우, 연료가 차지하는 비중을 줄이고 그만큼 더 많은 탑재체를 실을 수 있게 된다. 현재 스페이스X의 '팰컨 헤비' 로켓은 약 411톤을 연료로 사용해 저궤도에 64톤가량의 탑재체를 올릴 수 있다. 하지만 MnB₂가 도입되면 같은 공간에서 훨씬 많은 연료 효율을 기대할 수 있어 달 기지 건설이나 화성 탐사 같은 중장기 목표에도 탄력이 붙을 전망이다. 또한 MnB₂는 로켓 연료를 넘어 자동차 촉매 변환기, 플라스틱 분해 촉매 등 다양한 산업적 활용 가능성도 제시된다. 연구를 주도한 마이클 영(Michael Yeung) 올버니대 교수는 "연료 저장 공간을 줄여 로켓의 효율을 높이는 것이 핵심"이라며 "MnB₂는 그 가능성을 실질적으로 보여주는 사례"라고 평가했다. 붕소 기반 연료는 오랫동안 이론적 가능성에 머물렀지만, 이번 연구로 실험실 수준의 합성이 가능해지면서 새로운 도약의 기회를 맞았다. 전문가들은 MnB₂의 상용화가 실현된다면 우주 탐사의 효율성을 획기적으로 높이고, 우주 산업의 판도를 바꾸는 계기가 될 것으로 보고 있다. 이번 연구 성과는 국제 학술지 지오사이언스(Geosciences), 미국 화학학지(Journal of the American Chemical Society) 등에 게재됐다.
-
- 산업
-
[신소재 신기술(195)] 알루미늄보다 150% 강력한 붕소 연료 개발⋯우주 탐사 효율 혁신 기대
-
-
[기후의 역습(165)] 뜨거워진 바다, 지구의 탄소흡수능력 10% 감소
- 세계 최대 탄소 흡수원인 바다가 기후 변화로 인한 기록적인 고수온에 직면하며 탄소 흡수량이 크게 줄어든 것으로 나타났다. 국제 연구진은 2023년 바다가 이산화탄소(CO₂)를 흡수한 규모가 최근 추세치보다 약 10% 감소했다고 밝혔다. 이는 유럽연합(EU) 연간 배출량의 절반에 해당하는 수준이다. 2023년 한 해동안 해수면 온도가 전례 없는 수준으로 치솟았다. 열대 지방에서는 엘리뇨 현상이 극심했고, 북대서양 전역에서는 엄청난 더위가 찾아왔다. 그로 인해 바다의 CO₂ 흡수율이 무려 10% 이상 급감했다. 스위스 취리히연방공과대(ETH) 주도의 연구팀은 선박, 부표, 위성 관측 자료를 바탕으로 인공지능(AI) 분석을 수행해 2023년 전 세계 해수면 CO₂ 농도를 재구성했다. 그 결과, 북대서양을 비롯한 북반구 해역에서 이례적 고수온 현상이 나타나면서 바다가 CO₂를 흡수하기보다 방출하는 상황까지 관측됐다. 연구진은 "차가운 물이 더 많은 기체를 머금는 기본 물리 원리가 작동했다"며, 해수 온도가 높아질수록 CO₂ 용해도가 떨어져 흡수 능력이 약화된다고 설명했다. 다만 해수면에서 발생한 일시적 CO₂ 고갈, 수온 상승에 따른 성층 강화로 심층의 탄소 공급이 제한된 점, 그리고 플랑크톤의 '생물 펌프' 작용 등 세 가지 요인이 충격을 완화했다고 덧붙였다. 엘니뇨는 열대 태평양의 심해 용승을 줄여 해당 지역의 CO₂ 방출을 억제하는 효과를 냈지만, 북반구 해역의 이례적 고온이 이를 상쇄했다. 이번 연구는 관측 기반 분석이라는 점에서 의미가 크다. 연구팀은 수십 년간 축적된 해양 CO₂ 데이터를 머신 러닝으로 보완해 매일의 전 지구 해양 탄소 흡수량을 산출, 2023년의 변화를 정밀하게 비교했다. 전문가들은 이번 결과가 바다의 탄소 흡수력이 기후 위기 속에서 얼마나 취약해질 수 있는지를 보여준다고 지적했다. ETH의 니콜라스 그루버 교수는 "2023년은 바다 탄소 흡수원의 스트레스 테스트였다"며 "바다가 여전히 많은 CO₂를 흡수하고 있지만, 이 역할을 전적으로 기대할 수는 없다"고 경고했다. 이번 연구는 국제 학술지 네이처 클라이밋 체인지(Nature Climate Change)에 게재됐다.
-
- ESGC
-
[기후의 역습(165)] 뜨거워진 바다, 지구의 탄소흡수능력 10% 감소
-
-
[퓨처 Eyes(100)] 中 연구진, 세계 최초 다색 발광 식물 개발⋯'살아있는 램프' 시대 여나
- 스스로 빛을 내는 반딧불이나 심해어처럼 자연의 '생물 발광(Bioluminescence)' 현상은 인류의 상상력을 자극해왔다. 스스로 빛을 내는 식물로 가로등을 대체하고 도시를 밝히는 미래는 공상 과학 영화의 단골 소재였다. 최근 중국 과학자들이 유전자를 조작하는 대신, 빛을 저장하는 특수 입자를 식물에 주입해 세계 최초로 다채로운 색상의 빛을 내게 하는 데 성공하며 이러한 상상이 현실에 한 걸음 더 다가섰다. 최근 학술지 '매터(Matter)'에 발표된 이번 연구는 저렴하고 안전한 방식으로 식물을 '살아있는 램프'로 바꿀 수 있는 새로운 길을 열었다는 평가를 받는다. '유전자 변형' 한계 넘은 발상의 전환 과거 과학계는 식물이 빛을 내도록 유전자 자체를 바꾸는 '유전 공학' 기술에 집중했다. 주로 식물성 플랑크톤 등에서 발견되는 생물 발광 유전자를 식물 DNA에 삽입하는 이 방식은 빛이 희미하고 비용이 많이 들었으며, 조작된 유전자가 자연 생태계로 퍼져나갈 수 있는 '유전자 변이'의 위험성을 안고 있었다. 유전 공학의 대안으로 빛을 내는 입자를 주입하는 '소재 공학' 연구 역시 있었지만, 초기 단계에 머물렀다. 반딧불이의 발광 효소인 '루시페레이스'에서 추출한 나노 입자를 사용한 경우, 빛이 약했을 뿐만 아니라 30분 만에 급격히 어두워지는 뚜렷한 한계를 보였다. 중국 화남농업대학 연구팀은 발상을 전환해 새로운 해법을 찾았다. 바로 야광 장난감이나 안전 표지판 등에 널리 쓰이는 '무기 잔광 입자'다. 이 입자는 햇빛이나 LED 조명 등 외부의 빛 에너지를 흡수해 저장했다가 어두운 곳에서 서서히 방출하는 성질을 가졌다. 연구팀은 이 입자를 식물의 잎에 직접 주입하는 간편한 방식을 고안했다. 이 기술은 복잡한 유전자 조작 없이 10분 남짓한 시간 안에 식물을 발광체로 만들 수 있다. 비용 또한 식물 하나당 10위안(약 2000원)에 불과해 대량 생산과 상용화 가능성을 크게 높였다. 연구를 이끈 슈팅 리우 제1 저자는 "우리는 실험실에서 이미 다루는 재료를 사용해 영화 '아타바'의 비전을 실현하고 싶었다"며 "가로등을 대체하는 빛나는 나무를 상상해 보라"고 말했다. '적혈구 크기' 입자, 다육식물서 최적 해법 찾아 연구의 성공은 적절한 입자 크기를 찾는 것과 이를 효과적으로 흡수할 식물을 발견하는 데 달려있었다. 연구팀은 입자의 최적 크기가 약 7마이크로미터(μm), 즉 사람의 적혈구 하나와 비슷한 너비라는 것을 밝혀냈다. 이보다 작은 나노 입자는 식물 조직 내에서 쉽게 퍼졌지만 빛이 약했고, 더 큰 입자는 빛은 훨씬 밝았지만 크기 탓에 멀리 이동하지 못하는 딜레마가 있었다. 이 난제를 해결해 준 것은 뜻밖에도 다육식물 '에케베리아 메비나'였다. 스킨답서스나 청경채 같은 일반 잎 식물과 달리, 다육식물은 조밀하면서도 균일한 내부 조직 구조를 갖고 있었다. 바로 이 구조가 입자들이 뭉치지 않고 잎 전체로 빠르고 고르게 퍼져나갈 수 있는 이상적인 '통로' 역할을 한 것이다. 리우는 "정말 예상치 못한 결과였다. 입자들이 단 몇 초 만에 확산되었고, 다육식물 잎 전체가 빛났다"고 밝혔다. 이렇게 빛 에너지를 가득 머금은 다육식물은 최대 2시간 가까이 밝은 빛을 유지했다. 다육식물은 책을 읽을 수 있을 만큼의 빛을 냈다. 안전성·다양성 확보…살아있는 '컬러 램프' 구현 안전성 또한 중요한 과제였다. 연구팀은 입자 표면을 '인산염'으로 코팅해 식물 조직 내에서 거부 반응 없이 안정적으로 머무는 '생체 적합성'을 높였다. 실제로 입자를 주입한 식물은 며칠이 지나도 엽록소, 당, 단백질 수치가 정상적으로 유지돼 생명 활동에 아무런 지장이 없는 것으로 확인됐다. 나아가 연구팀은 다양한 종류의 인광체를 섞어 녹색뿐만 아니라 적색, 청색, 청자색 등 여러 색상의 빛을 자유자재로 구현했다. 56개의 다육식물을 벽처럼 배열해 주변의 책을 읽을 수 있을 만큼 밝은 빛을 내는 시연에 성공했으며, 자외선(UV)을 이용해 잎사귀에 원하는 글자나 그림을 일시적으로 새기는 것도 가능함을 보여주었다. 지속가능한 도시의 빛…친환경 건축 청사진 제시 이번 연구는 지속 가능한 도시 설계와 친환경 건축에 새로운 청사진을 제시한다. 식물이 내뿜는 빛은 시간이 지나면 사라지지만, 햇빛을 받으면 얼마든지 재충전된다. 정원이나 산책로, 실내 디자인에 화학 전지나 전력 공급 없이 활용할 수 있는 친환경 조명의 무한한 가능성을 연 셈이다. 다만 연구팀은 해당 물질이 식물에 미치는 장기적인 안전성에 대해서는 계속 연구를 진행 중이라고 밝혔다. 리우는 "완전히 인간이 만든 마이크로 스케일의 재료가 식물의 자연 구조와 이토록 완벽하게 결합할 수 있다는 것이 정말 놀랍다"며 "그들이 통합되는 방식은 거의 마법과 같고, 특별한 종류의 기능성을 창출한다"고 연구의 의의를 설명했다.
-
- 포커스온
-
[퓨처 Eyes(100)] 中 연구진, 세계 최초 다색 발광 식물 개발⋯'살아있는 램프' 시대 여나
-
-
[먹을까? 말까?(113)] 플라스틱 도마, 식탁 위의 보이지 않는 위험⋯미세플라스틱 장내 영향 첫 규명
- 플라스틱 도마에서 발생하는 미세플라스틱이 식품에 유입돼 체내로 들어갈 수 있다는 실험 결과가 나왔다. 중국 난징대학교 환경학과 하이-쥔 간(Hai-Jun Gan) 교수가 이끄는 연구팀은 "플라스틱 도마 표면에서 떨어져 나온 미세 입자가 장내 환경에 변화를 일으킨다"는 연구 결과를 발표했다고 어스닷컴이 보도했다. 해당 논문은 최근 국제 학술지 '인바이런멘털 헬스 퍼스펙티브(Environmental Health Perspectives)'에 게재됐다. 미세플라스틱 입자는 약 0.5cm(0.2인치)보다 작은 플라스틱 조각으로 첨가제와 화학 물질을 함유해 인체에 유해할 수 있다. 12주간의 생쥐 실험…플라스틱별 다른 반응 연구팀은 가정에서 가장 흔히 쓰이는 폴리프로필렌(PP)과 폴리에틸렌(PE) 도마를 이용해 실험을 진행했다. 두 소재의 도마로 음식을 반복적으로 썰어 생쥐의 사료에 섞고, 4주와 12주간 각각 급여하며 체내 반응을 관찰했다. 분석 결과, PP 도마에서 떨어진 입자는 평균 10마이크로미터(㎛), PE는 약 27마이크로미터로 확인됐다. 같은 질량 대비 PP 도마에서 훨씬 더 많은 입자가 발생했다. 12주차에는 사료 1그램당 약 1밀리그램의 미세플라스틱이 포함됐으며, 도마 표면의 손상이 심할수록 입자 방출량은 더 증가했다. 독립 실험실 분석에서도 새 PP 도마를 한 번 절단할 때 100~300개의 미세 플라스틱 입자가 떨어지는 것으로 확인돼, 오래 사용한 도마일수록 위험이 커진다는 점을 뒷받침했다. 염증 반응 vs. 미생물 변화 실험 동물의 반응은 소재에 따라 뚜렷하게 달랐다. PP 도마 입자를 섭취한 쥐는 장 점막의 염증과 장벽 손상 지표가 상승했다. 혈액 내 염증 지표인 지질다당류(LPS)와 C-반응단백질(CRP) 수치가 높아졌고, 장벽을 유지하는 단단결합 단백질의 발현이 감소했다. 반면 PE 도마 입자를 섭취한 쥐에서는 명확한 염증 반응은 나타나지 않았지만, 장내 미생물군 구성의 변화가 두드러졌다. 12주차에 비만세포 혹은 뚱보균이라고 부르는 피르미큐테스(Firmicutes) 비율은 감소하고 데셀포박테로타(Desulfobacterota) 비율이 증가했으며, 대사체 분석에서도 담즙산 관련 화합물의 변동이 관찰됐다. 연구팀은 "입자의 크기, 수, 표면 화학 성질, 첨가제 등 다양한 요인이 체내 반응에 영향을 미쳤다"고 분석했다. 일상에서의 잠재적 노출 플라스틱 도마는 미세플라스틱 노출 경로 중 하나에 불과하다. 실생활 조건을 적용한 분석에 따르면, 폴리에틸렌 도마로는 연간 약 7.4~50.7그램, 폴리프로필렌 도마로는 약 49.5그램의 미세플라스틱이 섭취될 수 있는 것으로 추정됐다. 도마 표면의 칼자국이 많아질수록 입자 방출량도 함께 늘어난다. 이와 함께 최근 연구에선 미세플라스틱이 인체 혈액과 경동맥 플라크에서도 검출됐고, 장기간 추적 연구에서는 심근경색, 뇌졸중, 사망률과의 상관성이 보고됐다. 연구진은 “도마로 인한 직접적인 질병 원인으로 단정할 수는 없지만, 인체 노출이 광범위하고 실제로 체내에서 순환할 수 있다는 점은 분명하다”고 강조했다. 목재 도마는 완벽한 대안 아냐 일부 소비자들은 플라스틱 도마 대신 목재 도마로 교체하지만, 목재 역시 관리가 소홀하면 미생물 오염의 위험이 있다. 칼자국, 수분, 지방이 표면에 남으면 세균 번식이 용이하기 때문이다. 전문가들은 "도마 재질과 관계없이 칼자국이 깊게 패인 도마는 제때 교체하고, 원재료별로 도마를 구분해 사용하는 것이 가장 중요하다"고 조언했다. 세계보건기구(WHO)는 "현재까지의 제한된 근거에 따르면 음용수 내 미세플라스틱이 인체 건강에 미치는 위험은 낮다"고 평가했지만, 이는 음용수에 국한된 내용이다. 식품과 주방 환경에서의 영향은 아직 충분히 규명되지 않았다. 연구진은 "이번 연구는 실제 주방 환경을 재현했다는 점에서 의미가 있다"며 "향후 사람을 대상으로 한 장기 노출 연구와 표준화된 검출 시스템 구축이 필요하다"고 밝혔다. 전문가들은 "오래된 도마는 주기적으로 교체하고, 강한 칼질이나 표면 긁힘을 줄이며, 재료별로 도마를 분리해 사용하는 것이 미세플라스틱 노출을 줄이는 현실적인 방법"이라고 조언했다.
-
- ESGC
-
[먹을까? 말까?(113)] 플라스틱 도마, 식탁 위의 보이지 않는 위험⋯미세플라스틱 장내 영향 첫 규명
-
-
[우주의 속삭임(137)] 나비성운서 포착된 '우주의 먼지'⋯지구 탄생 비밀 푸는 단서
- 지구 탄생의 기원을 밝히는 단서인 '우주의 먼지'가 나비성운에서 포착됐다고 과학기술 전문매체 사이언스 얼럿이 전했다. 지구로부터 약 3400광년 떨어진 전갈자리 남쪽에 자리한 나비성운(NGC 6302)에서 별의 죽음 과정에서 형성된 결정성 먼지가 식어가는 장면이 제임스 웹 우주망원경(JWST)에 잡힌 것이다. 별의 최후, '우주의 건축 자재' 남기다 나비성운은 거대한 항성이 생을 마치며 외곽 물질을 우주로 방출해 형성된 행성상 성운이다. 중심에는 백색왜성이 남아 극도로 뜨거운 열을 내뿜고 있으며, 폭발적으로 분출된 가스와 먼지가 나비 날개처럼 펼쳐져 있다. 연구진은 JWST의 적외선 관측과 칠레 아타카마 전파망원경(ALMA)의 데이터를 결합해 성운 내부를 정밀 분석했다. 그 결과, 성운 중심부의 두꺼운 먼지 고리에서는 그을음과 같은 비정질 입자뿐 아니라 포스터라이트, 엔스타타이트, 석영 등 규산염 결정 구조가 확인됐다. 먼지 입자는 수 마이크론 크기로 비교적 오래 성장한 것으로 분석됐다. 중심에서 멀어질수록 이온화 에너지가 낮은 원소가 분포하는 뚜렷한 농도 구배도 관측됐다. 생명 기원의 단서 '탄소 분자' 연구팀은 또 별에서 분출된 철·니켈 제트와 함께 다환방향족탄화수소(PAHs)의 고농도 분포를 발견했다. PAH는 탄소 원자가 고리 구조로 배열된 분자로, 우주 전역에 널리 퍼져 있으며 생명체 형성 이론에서 중요한 요소로 꼽힌다. 산소가 풍부한 환경으로 알려진 나비성운 중심부에서 PAH가 검출된 것은, 별의 강한 바람이 주변 물질과 충돌하며 새로운 유기 화합물을 생성했을 가능성을 시사한다. "우리는 별의 먼지로 이루어졌다" 영국 카디프대의 천체물리학자 마쓰우라 미카코 박사는 "수년간 논쟁이 이어졌던 우주 먼지의 생성 과정을 이번 관측으로 한층 명확히 이해할 수 있게 됐다"며 "차분하게 냉각된 영역에서는 보석 같은 결정체가, 격렬한 충돌이 일어난 영역에서는 거친 먼지가 동시에 형성되는 과정을 직접 확인했다"고 설명했다. 과학계는 이번 연구가 지구와 태양계 형성 과정을 규명하는 데 중요한 단서를 제공할 것으로 기대하고 있다. 태양계의 기원을 직접 되돌릴 수는 없지만, JWST와 같은 차세대 장비는 별의 죽음이 남긴 '먼지'가 어떻게 행성과 생명의 재료로 재탄생하는지를 보여주고 있다.
-
- 포커스온
-
[우주의 속삭임(137)] 나비성운서 포착된 '우주의 먼지'⋯지구 탄생 비밀 푸는 단서
-
-
[기후의 역습(161)] 서호주 산호초, 사상 최악 백화 현상⋯1,500km 구간 피해
- 서호주(WA) 연안의 세계적 산호초가 기록적인 해양 폭염으로 인해 사상 최악의 백화(bleaching) 피해를 입었다고 호주 해양과학연구소(AIMS)가 12일 밝혔다. AIMS에 따르면 지난해 8월부터 올해 5월까지 이어진 '가장 길고, 가장 넓으며, 가장 강도 높은' 해양 폭염으로 인해 수온이 비정상적으로 상승, 산호가 생명과 색을 유지하는 공생 조류를 방출하는 백화 현상이 광범위하게 발생했다고 BBC가 12일(현지시간) 보도했다. 이 현상은 산호에 치명적일 수 있다. 피해 범위는 약 1,500km에 이르며, 그동안 기후변화 영향을 거의 받지 않았던 로울리 숄스(Rowley Shoals), 노스 킴벌리(North Kimberley), 닝갈루(Ningaloo) 등도 큰 타격을 입었다. AIMS는 이번 시즌(2024~2025년)을 서호주 북서부와 중부 산호초 모두에서 "관측 이래 가장 심각한 백화"로 규정했다. AIMS는 "1986년 기록이 시작된 이래 공간적으로 가장 광범위한 백화 현상이 발생했으며, 주로 기후 변화로 인한 열 스트레스에 의한 것"이라고 덧붙였다. 일반적으로 8주간의 열 스트레스만으로도 산호는 고사할 수 있는데, 이번 조사에서는 많은 지역에서 산호의 15~30%가 피해를 입은 것으로 추정됐다. 연구진은 산호초가 회복하는 데 10~15년이 필요하지만, 기후변화로 백화 발생이 더 잦고 강해지면서 회복 시간을 확보하기 어려운 상황이라고 경고했다. AIMS는 탄소 배출로 인한 기후변화가 전 세계 산호초에 가장 큰 위협으로 작용하고 있으며, 이번 피해 규모에 대한 최종 평가에는 수개월이 소요될 것이라고 덧붙였다. 알자지라에 따르면, 과학자들은 남부 산호초가 관측 사상 가장 심각한 열 스트레스를 겪으면서 해당 지역의 산호 덮개가 전체의 약 3분의 1 가까이 줄어 26.9%로 하락했다고 밝혔다. 연구진은 더 컨버세이션(The Conversation)에 기고한 글에서 "39년 전 모니터링을 시작한 이후, 북부와 남부 모두에서 나타난 감소 폭이 단일 연도로는 최대 규모였다"고 전했다. 세계 최대 규모의 생명체로 불리는 그레이트 배리어 리프는 길이 2,300km(1,400마일)에 달하는 열대 산호초 군락으로, 매우 다양한 해양 생물이 서식한다. 유네스코에 따르면 그레이트 배리어 리프는 세계문화유산으로 등재돼 있으며, 400여 종의 산호를 포함해 세계에서 가장 많은 산호초가 존재하는 지역이다. 또한 1500여 종의 물고기, 4000여 종의 연체동물, 240여 종의 조류와 듀공과 대형 녹색 거북이 등이 서식하고 있다. 셀리나 스테드 AIMS 최고경영자(CEO)는 "대규모 백화 현상이 점점 심화되고 발생 주기도 짧아지고 있다"고 말했다. 스테드 CEO는 "전 세계 산호초의 미래는 온실가스 배출을 얼마나 강력하게 줄일 수 있느냐에 달려 있다"고 강조했다.
-
- ESGC
-
[기후의 역습(161)] 서호주 산호초, 사상 최악 백화 현상⋯1,500km 구간 피해
-
-
[기후의 역습(159)] 번개로 인한 고사목, 연간 3억 그루⋯탄소배출, 연간 10억 톤 달해
- 연간 3억 그루 이상의 나무가 번개에 맞아 쓰러지면서, 엄청난 양의 이산화탄소를 배출하는 나타났다. 지구 온난화로 번개 발생 빈도가 높아지는 가운데, 번개가 전 세계 산림 생태계에 미치는 영향이 기존 예상보다 훨씬 크다는 연구 결과가 나왔다. 독일 뮌헨공대(Technical University of Munich·TUM) 연구진은 세계 최초로 번개로 인한 나무의 직접적 피해를 정량적으로 분석해, 연간 약 3억 2000만 그루의 나무가 번개로 인해 고사목이 된다고 밝혔다고 과학 기술전문매체 사이언스얼럿이 전했다. 이번 연구는 국제학술지 「글로벌 체인지 바이올로지(Global Change Biology)」에 최근 게재됐다. 번개 발생과 지구 온난화 사이에는 명확한 연관성이 있다. 지구 온난화는 단순히 온도 상승에 그치지 않는다. 대기의 역학 자체를 변화시켜, 뇌우와 낙뢰 같은 극단적 기상 현상의 빈도와 강도를 증가시키는 주요 촉진 요인이다. 기후 과학자들은 온실가스로 인한 지구 온난화가 대기 불안정성을 증가시키며, 이로 인해 번개 발생 빈도와 강도가 높아질 수 있다고 보고 있다. 또한 번개는 주요 자연발화 원인 중 하나이며, 고온의 건조한 기후와 겹칠 경우 대형 산불의 직접 원인이 될 수 있다. 번개에 의한 고사목, 연간 탄소배출량 10억톤 이상 TUM 연구에 따르면, 번개에 의해 죽은 나무는 전 세계 식물 바이오매스(생물량) 연간 손실의 최대 2.9%를 차지하며, 이를 통해 연간 최대 10억 9000만 톤의 이산화탄소가 대기로 방출되는 것으로 추정됐다. 특히 이 수치는 번개로 인한 직접적인 피해만을 다룬 것으로, 산불 등 2차 피해는 포함되지 않았다. 참고로 서울시 기후변화 대응 계획에 따르면 서울시의 탄소배출량은 연간 4000만~4500만톤에 달한다. 10억톤의 CO₂는 서울의 1년 탄소 배출량의 약 25배에 해당한다. 또한 대한민국 전체 연간 온실가스 배출량은 약 6억~7억톤 수준으로 10억톤의 CO₂ 배출량은 우리나라 전체의 탄소 배출량의 약1.5배에 달하는 수준이다. 열대 우림서 수집한 데이터, 전 지구 모델로 확장 연구팀은 파나마 바라콜로라도섬(Barro Colorado Island, BCI)의 원시 열대림에서 촬영된 카메라 기반 번개 관측 자료를 활용했다. 이 데이터를 기반으로 드론과 현장 조사로 낙뢰 피해 나무를 확인하고, 이를 통해 평균 한 번의 번개가 3.5그루의 나무를 죽인다는 사실을 도출했다. 특히 '플래시오버(flashover)'라 불리는 현상이 확인됐다. 이는 낙뢰 전류가 나무의 수관 간 공기층을 타고 최대 45미터 떨어진 나무까지 전파되며 피해를 확산시키는 현상이다. 이후 연구진은 이를 검증된 수학 모델에 적용한 뒤, 위성 기반 광학망과 지상 관측 자료로 구성된 두 개의 방대한 낙뢰 빈도 데이터를 결합해 전 지구적 시뮬레이션을 수행했다. 그 결과, 2004년부터 2023년까지 연평균 2억 8600만3억 2800만 건의 낙뢰가 지구 표면을 강타했고, 이로 인해 연간 3억 100만3억 4,000만 그루의 나무가 사망한 것으로 나타났다. 이 중 지름 60cm 이상의 대형 수목은 2400만~3600만 그루에 달했다. 전체 고사 비중 0.7%지만, 대형수목 피해는 6.3% 연구에 따르면 자연적인 원인으로 죽은 나무는 연간 500억 그루에 달한다. 번개는 전체 죽은 나무의 0.69%만을 차지하지만, 대형 죽은 나무에서는 최대 6.3%를 차지해 생태계 구조에 상당한 영향을 미칠 수 있다고 연구진은 설명했다. 또한 번개 피해는 주로 열대 지역에 집중되어 있으나, 향후 중위도 및 고위도 지역에서 낙뢰 빈도가 증가함에 따라 온대 및 냉대림에서도 관련 피해가 더욱 확대될 가능성이 제기됐다. TUM 기후·지표면 상호작용 연구소의 안드레아스 크라우제(Andreas Krause) 박사는 "기후모델은 향후 온대림에서 번개에 의한 수목 사망이 더욱 중요해질 수 있음을 시사한다"고 밝혔다. 기후모델, 탄소 시뮬레이션에 낙뢰 반영 필요성 제기 이번 연구는 산림 구조 및 탄소 저장량을 예측하는 기존 기후모델에서 번개로 인한 수목 사망이 과소평가돼 있거나 아예 누락돼 있다는 점을 지적하며, 앞으로의 산림 탄소 계산 및 환경 예측 모델에 낙뢰 요인을 포함해야 한다는 필요성을 제기했다. TUM 연구진은 "죽은 나무의 정확한 사망 원인을 식별하기 어렵고, 기존 조사도 국지적·일회성에 머무르는 경우가 많아 통계적 추정이 불가능했다"며, 이번 연구는 그 공백을 메우는 첫 정량 분석이라고 평가했다. 지금까지는 산림 파괴의 주요 원인이 벌목이나 산불, 병충해로 여겨졌지만, 이 연구는 '하늘에서 내리꽂히는 번개' 또한 결코 무시할 수 없는 전 지구적 변수임을 보여주고 있다.
-
- ESGC
-
[기후의 역습(159)] 번개로 인한 고사목, 연간 3억 그루⋯탄소배출, 연간 10억 톤 달해
-
-
7월 소비자물가 2.1% ↑⋯가공식품·수산물·전셋값 동반 압박
- 7월 소비자물가가 두 달 연속 2%대 상승률을 기록했다. 통계청이 5일 발표한 '7월 소비자물가동향'에 따르면, 지난달 소비자물가지수는 116.52로 전년 동월 대비 2.1% 상승했다. 가공식품과 수산물 가격 상승이 주된 요인으로, 각각 4.1%, 7.3% 올랐다. 폭염과 폭우로 과일과 채소 가격도 강세를 보였으며, 소비쿠폰 지급 영향으로 한우 가격도 전월 대비 상승폭이 확대됐다. 전셋값도 대출 규제 여파로 소폭 오름세를 보였다. [미니해설] 식탁 물가 들썩…기후·소비쿠폰·전세난이 맞물렸다 7월 소비자물가 상승률이 두 달 연속 2%대를 유지했다. 5일 통계청 발표에 따르면, 소비자물가지수는 116.52(2020년=100)로, 전년 동월 대비 2.1% 상승했다. 이는 올해 6월(2.4%)에 이어 연속된 고물가 흐름으로, 주된 요인은 가공식품과 수산물, 농산물, 외식물가 등이다. 가공식품 물가는 출고가 인상 등 영향으로 4.1% 상승해 전체 물가를 0.35%포인트(p) 끌어올렸다. 상승 폭은 전월(4.6%)보다는 다소 줄었지만 여전히 높은 수준이다. 수산물 가격도 김 수출 수요 확대 등으로 7.3% 올라 전월(7.4%)과 비슷한 강세를 이어갔다. 고등어 가격은 12.6% 상승했다. 폭염·폭우에 채소값 급등…수박 20.7%↑ 농산물 가격은 전년 동월 대비 0.1% 하락했지만 하락 폭은 전월(-1.8%)보다 줄었다. 이상기후 영향으로 전월 대비로는 과일·채소 가격이 크게 올랐기 때문이다. 수박은 무려 20.7% 상승했으며, 시금치(78.4%), 상추(30.0%), 배추(25.0%) 등 채소류도 급등했다. 시금치는 전년 동기 대비로도 13.6% 상승했다. 통계청 박병선 물가동향과장은 “폭염과 폭우로 출하가 줄어든 가운데 수요가 늘어 수박과 채소류 가격이 상승했다”고 밝혔다. 그는 “작년에도 물가가 높았기 때문에 전년 동월 대비로는 상승 폭이 크지 않지만, 전월 대비로는 체감 상승폭이 컸다”고 설명했다. 한우·외식 소고기, 소비쿠폰 영향 받아 상승 한우 등 국산쇠고기 가격은 4.9% 올라 전월(3.3%)보다 상승 폭이 확대됐다. 외식용 소고기 가격도 1.6% 상승했다. 이는 7월 하순부터 지급된 소비쿠폰의 영향으로 해석된다. 다만, 도축 물량 감소와 외식물가 상승이 맞물리며 소비쿠폰의 정확한 영향도를 판단하긴 어렵다고 정부는 분석했다. 박병선 과장은 “소비쿠폰 지급 시점이 지난달 하순이어서 미미하게 반영됐을 것”이라며 “추이를 더 지켜봐야 한다”고 말했다. 전셋값·월세 동반 상승…대출 규제가 변수 주거비도 상승세를 보였다. 전년 동기 대비 전세는 0.5%, 월세는 1.1% 상승했다. 전월 대비로는 모두 0.1%포인트 올랐다. 정부는 6·27 전세대출 규제 시행 이후 전세 매물이 줄면서 가격에 영향을 미친 것으로 해석하고 있다. 공공요금·외식도 올라…체감물가 여전 공공서비스 물가는 수도권 지하철 요금 인상 등의 영향으로 1.4% 상승했다. 외식비도 돼지고기·쇠고기 가격 상승에 따라 오름세를 지속하고 있다. 석유류는 국제유가 하락 영향으로 전월 대비 1.0% 하락하며 한 달 만에 다시 내림세로 전환됐다. 이는 물가 전체를 일부 상쇄하는 역할을 했다. 생활물가지수 2.5%↑, 체감은 여전히 고공 OECD 기준 근원물가(식료품·에너지 제외)는 2.0% 올라 전월과 같은 수준을 유지했다. 생활물가지수도 2.5% 상승해 국민이 실제 체감하는 물가는 여전히 높은 수준임을 보여줬다. 국민 입장에서 장바구니 물가의 압박은 여전히 해소되지 않은 상황이다. 7월 물가 흐름은 공급 측 요인(기후, 수요 증가, 대출 규제 등)이 맞물려 광범위한 품목에서 상승세를 나타낸 것이 특징이다. 정부는 소비쿠폰 및 기후영향, 유가 변동 등을 종합적으로 감안해 향후 물가 흐름을 면밀히 점검한다는 방침이다. 정부는 8월부터 본격적인 추석 수요와 공급 불안정 가능성에 대비해 농산물 비축 물량 방출 및 수급 조절 대책을 검토 중이다. [Key Insights] 7월 물가는 가공식품과 수산물 가격 상승, 이상기후로 인한 채소·과일 값 급등, 전세 매물 감소 등이 복합 작용하며 2.1% 상승했다. 체감물가지수도 2.5%로 높은 수준을 유지해 국민의 생활비 부담이 계속되고 있다. [Summary] 통계청 발표에 따르면, 7월 소비자물가지수는 전년 대비 2.1% 상승하며 두 달 연속 2%대 상승세를 이어갔다. 가공식품, 수산물, 농산물 가격의 동반 상승과 전세난, 소비쿠폰 효과 등이 주요 요인으로 작용했다. 특히 기후 악화에 따른 채소류 가격 급등이 뚜렷했다. 체감물가지수도 2.5%로, 국민 생활비 부담은 여전히 높은 수준이다.
-
- 경제
-
7월 소비자물가 2.1% ↑⋯가공식품·수산물·전셋값 동반 압박
-
-
[우주의 속삭임(132)] 138억 년 전 우주의 첫 분자 반응, 독일 실험실서 재현
- 우주 최초의 분자 생성 경로로 추정되는 헬륨수소이온(HeH⁺)의 반응 메커니즘이 실험을 통해 확인됐다. 독일 막스플랑크 핵물리연구소(Max-Planck-Institut für Kernphysik, MPIK) 연구진은 최근 우주 초기 환경을 모사한 조건에서 HeH⁺와 수소 동위원소인 중수소(Deuterium)의 반응을 성공적으로 재현했다고 밝혔다. 이번 연구는 빅뱅 직후 형성된 최초의 분자 반응 과정을 규명함으로써, 초기 우주 화학과 별 탄생 메커니즘에 대한 이해를 심화하는 계기를 마련했다는 평가를 받고 있다고 사이테크데일리가 전했다. 관련 연구 결과는 국제 학술지 '천문학 및 천체물리학(Astronomy & Astrophysics)' 7월 24일자에 게재됐다. 최초의 분자, 우주의 별을 잉태하다 약 138억 년 전 발생한 빅뱅 직후, 우주는 초고온·초고밀도의 플라즈마 상태였다. 이 시기 수초 안에 양성자와 중성자가 결합해 수소와 헬륨 등 가장 가벼운 원소가 형성됐다. 그러나 이들 원소는 모두 이온화된 상태였으며, 약 38만 년이 지나서야 우주는 충분히 냉각돼 전자가 원자핵과 결합할 수 있는 '재결합(Recombination)' 단계를 맞이했다. 이 시점부터 안정된 중성 원자가 형성됐고, 이후 첫 분자 형성을 위한 화학 반응이 시작됐다. HeH⁺는 중성 헬륨 원자와 양성자 상태의 수소가 결합해 형성된 것으로, 오늘날까지도 우주에서 존재가 관측된 가장 원시적인 분자로 알려져 있다. HeH⁺는 분극(극성)이 크고 낮은 온도에서도 효율적으로 에너지를 방출할 수 있어, 우주 초기 별 형성 과정에서 냉각 인자로 기능했을 가능성이 제기돼 왔다. 실험실에서 재현한 원시 우주 반응 이번 실험은 독일 하이델베르크에 위치한 MPIK의 극저온 저장 링(Cryogenic Storage Ring, CSR)에서 진행됐다. 이 장비는 직경 35m 규모로, 우주 공간과 유사한 극저온(섭씨 -267도 수준)과 초고진공 조건을 구현할 수 있다. 연구진은 HeH⁺ 이온을 CSR 내부에 최대 60초간 저장하면서, 여기에 중성 중수소 원자 빔을 교차시켜 반응을 유도했다. 이 과정에서 HeH⁺가 중수소와 충돌해 중수소수소이온(HD⁺)과 중성 헬륨 원자가 형성되는 반응을 확인했다. 이는 기존에 예측됐던 수소이온(H₂⁺) 대신 중수소 반응을 활용함으로써, 유사 반응의 실험적 검증이 가능하게 한 방식이다. 특히 이번 실험은 충돌 에너지를 세밀하게 조절해 온도 변화에 따른 반응률을 측정할 수 있도록 설계됐다. 그 결과, 기존 이론이 예측한 것과 달리 저온에서의 반응 속도가 거의 일정하게 유지된다는 사실이 확인됐다. 기존 이론 뒤집은 실험 결과…우주 화학에 새 지평 MPIK의 물리학자인 홀거 크레켈(Holger Kreckel) 박사는 "기존에는 반응 온도가 낮아지면 HeH⁺의 반응률도 급격히 감소할 것으로 예측돼 왔다"며 "그러나 실험과 이를 뒷받침한 새로운 이론 계산 모두 이 같은 가설을 뒷받침하지 않았다"고 밝혔다. 이는 프랑스 오르세대학 이론물리학자 요한 스크리바노(Yohann Scribano) 박사팀의 후속 계산에서도 일관되게 확인됐다. 기존 연구에 사용된 반응 퍼텐셜(Potential Surface)에 오류가 있었음을 지적한 스크리바노 박사팀은 이를 수정한 새로운 계산을 통해 실험 결과와 정합되는 반응 경로를 도출했다. 이로써 HeH⁺와 수소(또는 중수소)의 충돌 반응이, 생각보다 훨씬 높은 빈도로 일어났을 가능성이 제기되며, 이는 초기 우주에서 H₂(분자 수소) 형성의 핵심 경로로 작용했을 수 있다는 가설에 힘을 싣는다. 별의 탄생을 이끈 단순한 분자 HeH⁺는 단순한 분자지만, 우주의 별 형성에 있어서는 복잡한 역할을 수행한다. 초기 우주는 별의 씨앗인 원시 성운들이 수축하며 온도가 올라가는 과정을 반복했는데, 이 과정에서 분자가 방출하는 복사에너지는 냉각을 유도하며 핵융합에 이르기까지의 임계 조건 형성에 기여했다. 수소 원자는 약 섭씨 1만도 이하에서는 효율적인 복사 냉각이 어려운 반면, HeH⁺는 그보다 낮은 온도에서도 분자 진동과 회전을 통해 효과적인 에너지 방출이 가능하다는 점에서 그 중요성이 재조명되고 있다. 우주 화학의 기원을 다시 쓰다 이번 실험은 '우주 화학의 시작'으로 불리는 초기 반응 경로를 실험적으로 재현하고, 그 반응 동역학을 정량적으로 규명한 첫 사례로 평가된다. HeH⁺는 2019년 허블우주망원경을 통해 행성상성운 NGC 7027(위 사진)에서 실제로 발견되며 천문학적으로도 그 존재가 확증된 바 있다. 이에 따라 실험적·이론적 데이터는 향후 우주 초기 분자 분포 모델과 별 형성 이론 정교화에 핵심 단서를 제공할 것으로 보인다. MPIK 연구진은 향후 다른 원시 분자들과의 반응성 실험도 확대해나갈 계획이며, 궁극적으로는 초기 우주의 분자적 진화 경로와 그에 따른 천체 형성 메커니즘을 체계화하는 데 기여할 것으로 기대된다. ◇ 참고 문헌: F. Grussie 외, “Experimental confirmation of barrierless reactions between HeH⁺ and deuterium atoms suggests a lower abundance of the first molecules at very high redshifts”, Astronomy & Astrophysics, 2025년 7월 24일. [DOI: 10.1051/0004-6361/202555316]
-
- 포커스온
-
[우주의 속삭임(132)] 138억 년 전 우주의 첫 분자 반응, 독일 실험실서 재현
-
-
[기후의 역습(158)] 기후변화로 뜨거워지는 여름⋯열대야, 조용한 건강 위협으로 부상
- 기후변화의 영향으로 여름철 밤기온이 점점 더 높아지면서, 열대야가 공중보건의 새로운 위협 요인으로 떠오르고 있다. 낮 동안의 극심한 더위뿐 아니라, 밤에도 기온이 충분히 떨어지지 않으면 신체의 열 방출이 어려워지고, 이로 인해 인체 회복 능력이 저하될 수 있다는 우려가 제기되고 있다고 미 ABC뉴스가 29일(현지시간) 보도했다. 미국 비영리 기후 분석기관인 클라이밋 센트럴(Climate Central)이 1970년부터 2024년까지 미국 전역 241개 지역의 여름철 야간 평균기온을 분석한 결과, 대부분 지역에서 야간 기온이 평균 약 1.7℃(약 3.1℉) 상승한 것으로 나타났다. 이는 기후 변화가 단지 낮 시간대의 문제가 아님을 시사한다. 지난 7월 2일 한국 기상청이 발표한 '1973∼2024년 연간 폭염 일수와 열대야 일수 분석 결과'에 따르면 1970년대 대비 2010년대 폭염일수는 평균 8.3일에서 14.0일로 1.7배, 열대야 일수는 평균 4.2일에서 9.0일로 2.1배 늘어난 것으로 나타났다. 미국 환경보호청(EPA)은 향후 수십 년간 여름철 열대야 발생 빈도가 더욱 잦아질 것이라 전망했다. 특히 미 전역 다수 지역에서는 밤 기온이 섭씨 약 21도(화씨 70도)를 넘는 날이 증가할 것으로 보인다. 열대야가 불러오는 건강 문제 미국 기상청(NWS)에 따르면, 극한 고온은 미국 내 기상 재해 가운데 가장 많은 사망자를 유발하는 요인이다. 폭염은 토네이도, 홍수, 허리케인보다 더 많은 인명 피해를 초래한다. 이 가운데 가장 심각한 건강 위협은 바로 밤 시간대에 나타난다. 질병통제예방센터(CDC)는 "야간 기온이 지나치게 높게 유지되면 체온 조절이 어려워지고, 특히 노인, 어린이, 만성질환자 등 취약계층에게는 신체적 부담이 가중된다"고 경고했다. 또한, 밤 동안의 높은 온도는 수면의 질을 떨어뜨려 면역력 저하, 정신 건강 악화, 심혈관 질환 등 만성 질환의 위험을 높일 수 있다. CDC는 "열대야는 단순한 불쾌지수를 넘어선 실질적인 건강 리스크"라며 경각심을 당부했다. 도시가 더 덥다…열섬현상 심화 열대야 현상은 도시 지역에서 특히 두드러진다. 환경보호청은 "콘크리트와 아스팔트로 덮인 도시 지역은 식생이 줄어들수록 열을 더 많이 흡수하고 방출하며, 이로 인해 야간 기온이 더욱 높게 유지된다"고 분석했다. 이른바 '도시 열섬 현상(Urban Heat Island)'이다. 이러한 도심의 고온화는 단지 인간의 건강 문제에만 국한되지 않는다. 인프라와 생태계 역시 회복할 수 있는 시간을 확보하지 못하게 되며, 이로 인해 냉방 수요 증가, 전력망 부담, 도심 생물다양성 저하 등의 문제가 뒤따른다. 대기 중 수증기 증가도 야간 냉각 방해 미 국립해양대기청(NOAA)은 온실가스 농도 상승과 대기 중 수증기 증가가 최근 수십 년간 야간 기온 상승의 주요 원인이라고 지목했다. 따뜻해진 대기는 더 많은 수증기를 품을 수 있으며, 이는 단열층 역할을 하며 복사 냉각을 차단해 밤에도 열이 빠져나가지 못하게 만든다. 이처럼 여름철 야간의 고온화는 단순한 불편을 넘어, 장기적인 건강과 사회 인프라, 생태계 전반에 영향을 미치는 복합적 문제로 부상하고 있다. 전문가들은 기후 변화에 따른 대응 전략에서 야간 온도 변화에 대한 고려가 필요하다고 강조하고 있다.
-
- 생활경제
-
[기후의 역습(158)] 기후변화로 뜨거워지는 여름⋯열대야, 조용한 건강 위협으로 부상
-
-
[단독] LG에너지솔루션 미국 공장서 한국인 계약직 직원 사망⋯기계 자동화 작업 중 참변
- LG에너지솔루션 미시간주 홀랜드 공장에서 협력업체 직원이 작업 중 숨지는 사고가 발생했다. 28일(이하 현지시간) 지역 현지매체 홀랜드 센테니얼닷컴, 넥스타 미디어 등에 따르면 이날 오후 5시경, 홀랜드 공공안전국(HDPS)은 '작업장 사고' 신고를 받고 LG에너지솔루션 공장(146th Avenue, 54th Street 인근)에 출동했으나, 피해자가 기계에 끼인 상태로 발견됐으며, 심각한 외상으로 인해 사망이 즉시 확인됐다고 밝혔다. 사망자는 LG의 자동화 기계를 담당하는 협력사 LG PRI 직원인 한국 국적의 김정원 씨로, 해당 기계의 자동화 설비 작업을 수행하던 계약직 직원인 것으로 확인됐다. LG에너지솔루션 대변인 필립 리너트는 성명을 통해 875 E. 48th St.에서 '계약업체 직원 사망 사고'가 발생했다고 확인했다. 리너트는 "안전은 당사의 최우선 가치이며, 사고가 발생한 라인의 신규 장비 설치 작업은 안전이 확보될 때까지 즉시 중단했다"고 밝혔다. 현재 LG에너지솔루션은 관련 조사를 전폭 지원하고 있으며, 미시간 산업안전보건청(MiOSHA)이 사고 경위를 조사 중이다. 경찰은 범죄 혐의점은 없다고 판단하고 있다. 회사 측은 "고인의 유가족과 동료들에게 깊은 애도를 표한다"고 전했다. LG에너지솔루션이 홀랜드에서 안전 문제로 인해 사고가 발생한 것은 이번이 처음은 아니다. 이번 사고는 지난해 발생한 사망사고에 이어 두 번째로, 현지 산업안전당국은 회사의 반복적인 안전관리 실패를 문제 삼고 있다. 미시간 직업안전보건청(MiOSHA)의 공식 기록에 따르면, LG에너지솔루션은 2023년 9월 홀랜드 공장에서 발생한 별도의 사망사고 이후, 2024년 4월 총 7건의 과태료 부과 통지를 받은 바 있다. 특히 이 가운데 2건은 '고의적 위반(Wilful Violation)'으로 분류돼, 각각 7만 달러의 벌금이 부과됐다. 해당 위반은 '락아웃/태그아웃(Lockout/Tagout)'으로 불리는 안전 절차를 소홀히 한 데 따른 것으로, 이는 기계 및 장비 유지보수 과정에서 예기치 않은 작동이나 에너지 방출로 인해 근로자가 중대한 위험에 노출되는 상황을 방지하기 위한 핵심 조치다. '고의적 위반'은 미국 산업안전보건청(OSHA)이 부과하는 가장 중대한 위반 등급으로, 이는 고용주가 명백히 안전 규정을 무시하거나, 직원 안전에 대해 중대한 무관심을 보였음을 의미한다. 이외에도 5건의 위반은 '중대 위반(Serious Violation)'으로 판정됐으며, 각각 7000달러의 벌금이 부과됐다. 이 중 4건은 이후 3500달러로 감경됐다. 반복되는 안전사고와 중대한 위반 판정으로 인해 LG에너지솔루션의 미국 내 안전관리 시스템에 대한 근본적인 점검이 필요하다는 지적이 제기되고 있다.
-
- 산업
-
[단독] LG에너지솔루션 미국 공장서 한국인 계약직 직원 사망⋯기계 자동화 작업 중 참변
-
-
[우주의 속삭임(128)] 태양 질량 225배 초대형 블랙홀 병합 포착⋯기존 우주 진화 모델에 도전장
- 미국 LIGO(레이저 간섭계 중력파 관측소) 연구진이 사상 최대 규모의 블랙홀 병합(merger)을 포착했다고 14일(이하 현지시간) 공식 발표했다. 이번 관측은 블랙홀 형성과 진화에 대한 기존 천체물리학 이론에 중대한 도전이 될 것으로 보인다. 14일 과학 기술전문매채 기즈모도에 따르면 이번에 관측된 중력파는 'GW231123'으로 명명됐으며, 2023년 11월 23일 처음 포착됐다. 해당 신호는 태양 질량의 각각 137배와 103배에 달하는 두 거대 블랙홀이 충돌하며 형성된 것으로 분석됐다. 이 두 개의 거대한 블랙홀은 지구 자전 속도의 40만 배로 회전하며 더욱 거대한 블랙홀을 형성했다. 이번에 병합 결과로 생성된 블랙홀은 태양 질량의 약 225배에 달하는 초대형 천체로, 이는 중력파 관측 이래 가장 거대한 블랙홀 탄생이다. 이러한 합병의 이전 기록을 보유한 'GW190521'은 태양 질량의 약 140배로 추정된다. LIGO(Laser Interferometer Gravitational-wave Observatory)는 2015년 최초로 중력파 존재를 입증한 이래, 이탈리아의 비르고(Virgo), 일본의 KAGRA와 함께 약 300건에 달하는 블랙홀 병합과 중성자별 충돌 신호를 감지해왔다. 하지만 이번 병합은 질량뿐 아니라 그 기원이 명확하지 않아 과학자들 사이에서 '금지된 병합'이라는 표현까지 나올 정도로 충격을 주고 있다. 영국 카디프대학교의 물리학자이자 LIGO 소속 연구자인 마크 해넘(Mark Hannam) 교수는 "이번 충돌은 기존 항성 진화 모델로는 설명되지 않는다"며 "이전에 병합된 작은 블랙홀들이 모여 현재의 블랙홀 쌍을 형성했을 가능성이 있다"고 설명했다. 그는 "이처럼 질량이 큰 쌍성계는 지금까지 관측된 바 없었으며, 블랙홀 형성 이론에 근본적인 재검토가 필요할 것"이라고 말했다. 병합 당시 두 블랙홀은 지구 자전 속도의 약 40만 배로 회전하고 있었으며, LIGO는 단 0.1초간 지속된 중력파 신호를 포착해 분석에 성공했다. 블랙홀 병합 과정은 통상 중력적으로 불안정해 신호가 검출되기 어려운 데 반해, 이번 사례는 병합이 놀라울 정도로 안정적이었고 강력한 중력파를 방출해 지구에까지 도달했다. 영국 포츠머스대학교의 찰리 호이(Charlie Hoy) 박사는 "이번 병합으로 생성된 블랙홀은 일반상대성이론이 허용하는 회전 속도 한계에 근접할 만큼 빠르게 회전하고 있다"며 "이로 인해 신호 해석이 더욱 복잡하고 이론적으로도 극한 상황에 해당한다"고 분석했다. 이번 발견은 영국 글래스고에서 7월 14일 개막하는 '일반상대성이론 및 중력파 국제학술대회(GR24-Amaldi)'에서 정식 발표되며, 이후 관측 데이터는 전 세계 연구진에게 공개돼 후속 분석이 진행될 예정이다. 연구에 참여한 영국 버밍엄대학교의 그레고리오 카룰로(Gregorio Carullo) 박사는 "GW231123 신호는 향후 수년에 걸쳐 정밀 해석이 이뤄져야 할 만큼 복잡하다"며 "보다 정교한 이론 모델이 등장해야 그 전모가 드러날 것"이라고 말했다. 중력파는 빛과 달리 우주의 어두운 영역을 '관측'할 수 있는 희귀한 수단으로, 블랙홀과 같은 극한 천체는 물론, 고대 별의 진화, 암흑물질 탐색 등에서도 결정적 단서를 제공할 수 있다. 블랙홀의 질량과 회전 속도에 대한 기존 관측 한계를 뛰어넘는 이번 발견은, 우주의 극단적 현상에 대한 인류의 이해를 다시 한 단계 끌어올리는 계기가 될 전망이다.
-
- 포커스온
-
[우주의 속삭임(128)] 태양 질량 225배 초대형 블랙홀 병합 포착⋯기존 우주 진화 모델에 도전장
-
-
[신소재 신기술(186)] AI가 설계한 차세대 냉각 소재⋯실내 온도 낮추고 에너지 소비 줄인다
- 인공지능(AI)을 활용해 설계된 새로운 열 방출 소재가 개발돼 냉방 효율을 획기적으로 개선하고, 주거·의류 산업·우주 분야까지 폭넓은 적용 가능성을 제시하고 있다. 미국 텍사스대학교 오스틴캠퍼스 연구진은 중국 상하이교통대, 싱가포르국립대, 스웨덴 우메오대 등과 공동으로, AI 기반 머신러닝 기법을 활용해 3차원 열 메타 방출체(thermal meta-emitter)를 설계하는 프레임워크를 개발했다고 밝혔다. 해당 연구는 국제학술지 네이처(Nature) 7월호에 게재됐다. 연구팀은 이를 통해 총 1,500종 이상의 독자적 소재를 설계했으며, 이러한 소재들은 복잡한 열 방출 특성을 조절함으로써 에너지 효율을 극대화할 수 있도록 고안됐다. 텍사스대 기계공학과의 유빙 정(Yuebing Zheng) 교수는 "기존 방식은 시도와 오류에 의존해 설계 속도와 정확도에 한계가 있었지만, 이번 프레임워크는 설계 공간을 비약적으로 확장함으로써 이전에는 상상조차 어려웠던 고성능 소재를 현실화했다"고 설명했다. 실제 냉각 실험에서도 효과가 입증됐다. 연구진은 설계된 4종의 메타 방출체 중 하나를 모형 주택의 지붕에 적용해 기존 상용 백색·회색 도료와 비교했다. 정오 기준 직사광선 하에서 4시간이 지난 뒤, 해당 메타 방출체를 적용한 지붕의 표면 온도는 기존 도료 대비 평균 5~20도 낮게 유지됐다. 이 같은 성능을 기반으로 연구진은, 고온 도시인 리우데자네이루나 방콕의 아파트에 적용할 경우 연간 약 1만5,800킬로와트시(kWh)의 에너지를 절감할 수 있을 것으로 추정했다. 이는 일반적인 에어컨 한 대가 연간 소비하는 전력량(약 1,500kWh)의 10배가 넘는 수치다. 연구진은 해당 소재의 활용 분야가 단순 주거·상업용 냉방을 넘어 도시환경, 항공우주, 섬유, 자동차 등 다방면으로 확장될 수 있다고 보고 있다. 예를 들어 도심 건축물에 적용할 경우 열섬현상을 줄이고, 우주선 외부에 활용하면 태양광 흡수와 복사열 방출을 동시에 조절해 내부 온도를 효과적으로 관리할 수 있다는 설명이다. 소비자용 제품에도 적용 가능성이 높다. 이 소재를 의류나 캠핑 장비에 접목하면 더운 환경에서도 착용자의 체온 상승을 억제할 수 있고, 차량 외장재나 내장재로 활용할 경우 햇빛 아래 장시간 주차된 차량의 내부 온도를 낮추는 데 기여할 수 있다. 정 교수는 "기존 자동화 설계 방식은 단층 박막 구조나 평면 패턴 등 단순한 형태만 구현 가능했으나, 이번 프레임워크는 다층적이고 입체적인 구조 설계가 가능해 실질적인 성능 향상이 가능하다"고 밝혔다. 해당 연구를 공동 주도한 카이 야오(Kan Yao) 박사는 "AI가 모든 문제의 해답은 아니지만, 열 방출체처럼 스펙트럼 조절이 핵심인 소재 설계에서는 머신러닝이 최적의 해법이 될 수 있다"고 강조했다. 연구진은 향후 이 프레임워크를 나노광학(nanophotonics) 분야 전반에 확장 적용할 계획이다. 나노광학은 빛과 물질이 나노미터 수준에서 상호작용하는 영역으로, 센서·이미징·에너지 기술 등 차세대 광학 기술의 핵심으로 주목받고 있다. 이번 논문은 AI 기반 신소재 설계가 실험적 한계를 넘어 상용 기술로 이어질 수 있는 가능성을 제시한 사례로 평가된다. 향후 기후변화 대응 및 에너지 효율화 기술 발전의 새로운 전환점이 될 수 있을지 주목된다.
-
- IT/바이오
-
[신소재 신기술(186)] AI가 설계한 차세대 냉각 소재⋯실내 온도 낮추고 에너지 소비 줄인다
-
-
[기후의 역습(152)] "빙하 녹으면 화산 폭발 급증"⋯지구 온난화 '숨은 재앙' 드러나
- 지구온난화로 인한 빙하 해빙이 장기적으로 화산 분화 가능성을 높일 수 있다는 연구 결과가 발표됐다고 인사이드 클라이밋 뉴스가 7일(현지시간) 보도했다. 특히 남극과 같은 고위도 지역에서 해빙이 화산 활동을 촉진하고, 이로 인한 분화가 다시 기후에 영향을 주는 '피드백 루프'가 발생할 수도 있다는 우려가 제기됐다. 미국 위스콘신대학교 브래드 싱어(Brad Singer) 교수 연구팀은 칠레 안데스 산맥에 위치한 여섯 개 화산에서 수집한 암석의 지화학 분석을 통해, 마지막 빙하기 이후 빙하가 사라지며 화산 활동이 증가한 사실을 규명했다. 이 연구는 미국 국립과학재단(NSF) 지원으로 진행됐으며, 7일 체코 프라하에서 열린 과학 학술회의에서 공개됐다. 싱어 교수는 "두꺼운 빙하가 화산의 '뚜껑' 역할을 하다가, 얼음이 녹으면서 갑작스럽게 내부 압력이 해소돼 분화가 발생할 수 있다"며, "빙하가 사라지자마자 분출 빈도뿐 아니라 용암의 화학 조성에도 뚜렷한 변화가 관측됐다"고 밝혔다. 그는 이를 "콜라 병이나 샴페인 병의 뚜껑을 열었을 때와 비슷한 현상"이라고 설명했다. 빙하기 절정기인 약 1만4000년~2만 년 전, 빙하 아래에 갇힌 마그마는 실리카가 풍부한 결정 구조를 형성하며 기체를 가두었고, 이는 폭발적 분화를 유발하는 요인이 됐다고 연구진은 분석했다. 당시의 화산재는 수 킬로미터 상공까지 분출돼 성층권에 도달했을 가능성도 있는 것으로 추정된다. 특히 연구진은 남극 서부 빙상 아래 존재하는 100개 이상의 화산에도 주목했다. 해당 지역은 이미 해수 온난화로 인해 하부에서 떠받치는 빙붕이 녹고 있으며, 지각에 균열이 있는 화산 지대가 존재할 가능성이 크다고 지적했다. 싱어 교수는 "이런 지역에서 빙하가 급격히 사라질 경우, 화산 활동이 빠르게 증가할 수 있다"며 "화산이 빙하 아래에서 분출하면 하부에서 빙하를 녹이며 해수면 상승을 가속화할 수 있다"고 경고했다. 공동연구자인 파블로 모레노 야에거(Pablo Moreno-Yaeger)는 "얼음은 마치 뚜껑처럼 작용해 화산 내부의 마그마 조성을 바꾸고, 빙하가 사라지면 더 폭발적인 분화로 이어질 수 있다"고 덧붙였다. 실제로 아이슬란드에서는 1970년대부터 빙하와 화산의 상관관계에 대한 연구가 진행되어 왔으며, 2016~2017년에는 카틀라(Katla) 화산에서 하루 최대 2만 4000톤의 이산화탄소가 분출된 것으로 측정됐다. 이는 아이슬란드 전체 화산 이산화탄소 배출량 추정치를 웃도는 수치다. 또한 해빙으로 인해 방출되는 대규모 담수의 중량은 지각에 수압을 가중시켜 지진 활동까지 유발할 수 있다는 연구도 나왔다. 2024년 발표된 논문에 따르면, 댐 수위가 높을 때 지진 발생 가능성이 증가하듯, 해수면 상승도 지진을 유발할 수 있는 요소다. 영국 옥스퍼드대학교의 화산학자 데이비드 파일(David Pyle)은 이번 연구에 대해 "기후 변화에 따른 빙하 질량 변화와 화산 활동 사이의 연계를 뒷받침하는 중요한 증거"라고 평가했다. 한편, 안데스 화산들의 경우 빙하 해빙 이후 수천 년의 시차를 두고 화산 활동이 증가한 것으로 나타나, 이런 변화가 즉각적이지는 않다는 점도 강조됐다. 싱어 교수는 "화산 폭발 시점은 예측하기 어렵지만, 해빙이 이어질수록 더 많은 화산이 깨어날 가능성은 분명하다"며 "화산 분출이 다시 얼음을 녹이고, 그로 인해 해수면이 상승하는 '부정적 피드백 루프'가 현실이 될 수 있다"고 경고했다.
-
- 포커스온
-
[기후의 역습(152)] "빙하 녹으면 화산 폭발 급증"⋯지구 온난화 '숨은 재앙' 드러나