검색
-
-
[퓨처 Eyes(107)] 138억년 우주론의 심장 '인플라톤', 그 가설의 종언
- 우주론의 교과서가 반세기 만에 다시 쓰일 중대한 기로에 서 있다. 우주의 탄생을 설명하는 표준 이론 '빅뱅 이론'의 핵심 가설 '우주 급팽창(cosmic inflation)'의 오랜 숙제를 풀 새로운 모델이 등장했기 때문이다. 스페인과 이탈리아 공동 연구팀은 빅뱅 직후 우주를 부풀린 동력원으로 지목됐던 미지의 입자 '인플라톤(inflaton)' 없이도, 태초의 시공간을 뒤흔든 '중력파(Gravitational waves)'만으로 우주의 기원과 구조를 완벽하게 설명할 수 있다는 혁신적인 이론을 제시했다. 아인슈타인의 100년 묵은 아이디어를 되살려낸 이 이론은, 오직 중력과 양자역학만으로 우주 창조의 비밀을 풀 수 있음을 증명하며 학계의 폭발적인 관심을 받고 있다. 지난 2025년 7월, 미국 물리학회(American Physical Society)가 발행하는 세계적 권위의 학술지 '피지컬 리뷰(Physical Review)'에는 '인플라톤 없는 급팽창(Inflation without an inflaton)'이라는 제목의 기념비적인 논문 한 편이 실렸다. 바르셀로나 대학교의 라울 히메네스 교수가 이끄는 4인의 과학자팀은 이 논문을 통해 기존 빅뱅 이론의 패러다임을 전환할 새로운 모델을 제안했다. 이들의 주장은 놀랍고도 명료하고 우아하다. 우주를 지금의 모습으로 빚어낸 창조의 싸앗은 정체불명의 '유령 입자'가 아니라, 마치 잔잔한 호수에 돌을 던졌을 때 퍼져나가는 물결처럼 시공간 자체에 새겨진 미세한 파동, 즉 중력파라는 것이다. 우주 표준론의 아킬레스건, '인플라톤' 기존 표준 우주론에 따르면, 약 138억년 전 빅뱅 직후 우주는 1초도 안 되는 눈 깜짝할 사이보다 짧은 찰나에 상상을 초월하는 속도로 팽창했다. '우주 급팽창'이라 불리는 이 현상은 현재 우주가 거대 규모에서 놀랍도록 평탄하고 균일한 이유를 설명하는 가장 유력한 가설이었다. 하지만 이 이론에는 치명적인 공백이 있었다. 대체 무엇이 이 상상조차 힘든 팽창을 일으켰는가. 이론의 성립을 위해 여러 변수들이 극도로 정밀하게 맞아떨어져야 한다는 복잡성도 문제였다. 과학자들은 이 수수께끼를 풀기 위해 '인플라톤'이라는 가상의 입자를 무대 위로 불러냈다. 이 입자가 가진 막대한 에너지가 급팽창의 동력원이었다는 설명이다. 그러나 지난 수십 년간 수많은 노력이 있었음에도 인플라톤의 존재는 단 한 번도 실험적으로 관측되거나 증명되지 못했고, 현대 우주론의 가장 큰 아킬레스건으로 남아있었다. 아인슈타인의 100년 된 유산, 해답을 품다 연구팀은 바로 이 지점에서 과감한 역발상을 시도했다. 증명되지 않는 가상의 존재에 의존하는 대신, 이미 그 존재가 증명된 가장 근본적인 물리 현상에서 답을 찾고자 한 것이다. 그들이 주목한 것은 100여년 전 아인슈타인이 예측했던 시공간의 메아리 '중력파'였다. 연구팀은 전통적인 우주론의 틀을 벗어나 양자 물리학의 렌즈로 우주를 들여다봤다. 그 결과 빅뱅 빅후 극도의 혼돈 상태에서 발생한 미세한 중력하들이 서로 간섭하고 상호작용하며 2차효과로 미세한 밀도의 차이를 만들어냈음을 규명했다. 연구팀은 이 아이디어를 '더시터르 공간(De Sitter space)'이라는 수학적 구조와 연결했는데, 1920년대 아인슈타인과 함께 우주의 구조를 탐구했던 네덜란드 수학자 빌럼 더시터르(Willem De Sitter)의 이름에서 따온 것으로, 잊혔던 아인슈타인의 유산이 21세기에 화려하게 부활했다. 마치 미세한 잉크 방울이 물에 퍼지며 무늬를 만들듯, 이 작은 밀도 차이가 바로 우주 구조의 씨앗이 되었다. 시간이 흐르며 밀도가 조금 더 높았던 곳ㅇ른 중력에 의해 주변 물질을 끌어당겨 별과 은하를 잉태했고, 마침내 장엄한 우주 거대 구조로 성장했다. 연구팀의 모델은 이 과정이 현재 천문학자들이 관측하는 우주의 모습과 정확히 일치함을 보여주었다. 더 나아가, 급팽창 이론의 또 다른 난제였던 '팽창의 종료' 문제에도 명쾌한 해답을 제시한다. 초기 우주의 고유한 불안정성이 급격한 팽창을 자연스럽게 멈추고, 에너지가 입자로 변환되며 오늘날처럼 복사(빛)로 가득한 우주로 순조롭게 전환될 수 있었다는 것이다. 불필요한 가설 없이, 중력과 양자역학만으로 이번 연구의 공동 저자인 스페인 ICREA의 실험과학 및 수학 연구원 라울 히메네스 박사는 "수십 년간 우리는 한 번도 관측된 적 없는 요소에 기반한 모델을 사용해 초기 우주를 이해하려 노력해왔다"면서, "이번 제안이 흥미로운 이유는 그 단순성과 검증 가능성에 있다. 우리는 추측에 기반한 요소를 추가하는 것이 아니라, 중력과 양자역학만으로 우주 구조가 어떻게 생겨났는지 설명하기에 충분할 수 있음을 보여주고 있다"고 말했다. 이탈리아 파도바 대학교의 다니엘레 베르타카 교수 역시 "과학에서 이론의 유연성이 너무 크면 문제가 될 수 있다. 모델이 현상을 예측하는 것인지, 단순히 관측 데이터에 꿰맞추는 것인지 판단하기 어렵기 때문"이라며, "이번에 제안된 모델의 진정한 강점은 바로 그 우아함과 단순성, 그리고 임의로 조절할 수 있는 자유 매개변수가 없다는 점"이라고 강조했다. 세기의 발견, 최종 검증의 무대에 오르다 중력파라는 개념은 1893년 올리버 헤비사이드와 1905년 앙리 푸앵카레에 의해 처음 제안되었고, 아인슈타인이 1916년 일반 상대성 이론에서 '시공간 구조의 물결'로 정립했다. 초신성 폭발이나 블랙홀 병합 같은 격렬한 우주 현상에서 발생하는 이 파동은 극도로 미약하여, 인류는 2015년 9월에 이르러서야 미국의 '레이저 간섭계 중력파 관측소(LIGO)'를 통해 100년 만에 그 존재를 직접 확인하는 데 성공했다. 향후 정밀한 우주 관측을 통해 이 새로운 모델의 예측이 사실로 확인된다면, 인류의 우주관은 혁명적인 전환을 맞게 된다. 우주의 기원이라는 가장 근원적인 질문의 해답이 미지의 입자가 아닌, 시공간의 본질인 '중력' 그 자체에 새겨져 있었음이 드러나기 때문이다. 천문학자 칼 세이건이 "우리는 별의 물질로 만들어졌다. 우리는 우주가 스스로를 알게 하는 하나의 방법"이라고 설파했듯, 이 연구는 우주가 스스로의 비밀을 인류에게 드러내는 또 하나의 장대한 과정일지 모른다. 인류가 던진 가장 오래된 질문에, 우주가 마침내 가장 근원적인 방식으로 답하기 시작했다.
-
- 포커스온
-
[퓨처 Eyes(107)] 138억년 우주론의 심장 '인플라톤', 그 가설의 종언
-
-
[우주의 속삭임(146)] 두 개의 블랙홀 '쌍둥이 궤도' 첫 관측⋯136년 수수께끼 풀리다
- 인류가 처음으로 두 개의 블랙홀이 서로를 공전하는 모습을 직접 관측했다. 핀란드 투르쿠대학교 천문학자 마우리 발토넨(Mauri Valtonen) 연구팀은 초대형 전파망원경 관측망을 통해 퀘이사 'OJ287' 중심부에서 두 개의 초질량 블랙홀이 나란히 공전하는 모습을 포착했다고 과학 전문매체 라이브 사이언스, IFL사이언스 등 다수 외신이 9일(이하 현지시간) 보도했다. 해당 연구는 9일 국제학술지 '천체물리학저널(The Astrophysical Journal)'에 게재됐다. OJ287은 지구에서 약 50억 광년 떨어진 곳에 위치한 퀘이사로, 그동안 12년 주기의 밝기 변동이 관측되어 두 블랙홀이 존재할 가능성이 꾸준히 제기돼 왔다. 이번 연구는 지상 및 우주 전파망원경의 관측 자료를 결합해 두 블랙홀의 존재를 시각적으로 입증한 첫 사례로 평가된다. 연구진은 "두 블랙홀이 서로를 도는 장면이 이미지로 확인된 것은 이번이 처음"이라며 "블랙홀 자체는 빛을 내지 않지만, 주변 가스와 고속 입자 제트를 통해 그 위치를 식별할 수 있었다"고 밝혔다. 관측 결과, 중심 블랙홀은 태양 질량의 180억 배, 동반 블랙홀은 약 1억5000만 배로 추정된다. 이번 전파망원경 네트워크에는 러시아의 우주 전파망원경 '라디오애스트론(RadioAstron)' 위성이 포함됐다. 이 위성은 2011년부터 2019년까지 운영된 전파망원경을 탑재한 러시아 과학 위성이다. 이 위성의 안테나는 달까지 거리의 절반까지 접근해 관측 정밀도를 크게 높였다. 덕분에 연구진은 두 개의 제트가 서로 다른 방향으로 뻗어 있는 것을 식별해 각각의 블랙홀에 해당함을 확인했다. OJ287의 특이성은 이미 19세기 후반부터 알려져 있었다. 136년 동안의 광학 관측에서 약 12년을 주기로 밝기가 급등하는 패턴이 반복되어 왔다. 이번 연구는 그러한 주기적 변화가 두 블랙홀의 공전으로 인해 발생한 것임을 뒷받침한다. 블랙홀은 거대한 별이 붕괴하면서 형성되며, 주변 물질을 흡수하며 성장한다. 일부는 강력한 중력과 마찰로 인해 물질이 고온으로 달아오르며 빛을 방출하는데, 이를 '활성은하핵(AGN)'이라 부른다. 이 가운데 가장 극단적인 형태가 퀘이사다. 퀘이사는 태양보다 수십억 배 무거운 초질량 블랙홀이 방출하는 강렬한 빛줄기로, 지구에서도 관측 가능한 우주 최강의 광원 중 하나다. 이번 관측으로 과학자들은 그동안 중력파 탐지로만 간접 확인했던 '블랙홀 이중계'의 실재를 시각적으로 증명하게 됐다. 연구진은 다만 "관측된 두 개의 제트가 겹쳐 보였을 가능성을 배제할 수 없어, 향후 더 높은 해상도의 추가 관측이 필요하다"고 밝혔다. 발토넨 교수는 "라디오애스트론 위성이 활동하던 시기 덕분에 이런 이미지를 얻을 수 있었다"며 "향후 차세대 우주망원경이 가동되면, 작은 블랙홀의 '꼬리 흔들림(wagging tail)' 현상까지 포착할 수 있을 것"이라고 말했다. 이번 발견은 인류가 블랙홀의 형성과 병합 과정을 직접 관찰할 수 있는 새로운 시대의 서막을 알리는 것으로 평가된다.
-
- 포커스온
-
[우주의 속삭임(146)] 두 개의 블랙홀 '쌍둥이 궤도' 첫 관측⋯136년 수수께끼 풀리다
-
-
[우주의 속삭임(128)] 태양 질량 225배 초대형 블랙홀 병합 포착⋯기존 우주 진화 모델에 도전장
- 미국 LIGO(레이저 간섭계 중력파 관측소) 연구진이 사상 최대 규모의 블랙홀 병합(merger)을 포착했다고 14일(이하 현지시간) 공식 발표했다. 이번 관측은 블랙홀 형성과 진화에 대한 기존 천체물리학 이론에 중대한 도전이 될 것으로 보인다. 14일 과학 기술전문매채 기즈모도에 따르면 이번에 관측된 중력파는 'GW231123'으로 명명됐으며, 2023년 11월 23일 처음 포착됐다. 해당 신호는 태양 질량의 각각 137배와 103배에 달하는 두 거대 블랙홀이 충돌하며 형성된 것으로 분석됐다. 이 두 개의 거대한 블랙홀은 지구 자전 속도의 40만 배로 회전하며 더욱 거대한 블랙홀을 형성했다. 이번에 병합 결과로 생성된 블랙홀은 태양 질량의 약 225배에 달하는 초대형 천체로, 이는 중력파 관측 이래 가장 거대한 블랙홀 탄생이다. 이러한 합병의 이전 기록을 보유한 'GW190521'은 태양 질량의 약 140배로 추정된다. LIGO(Laser Interferometer Gravitational-wave Observatory)는 2015년 최초로 중력파 존재를 입증한 이래, 이탈리아의 비르고(Virgo), 일본의 KAGRA와 함께 약 300건에 달하는 블랙홀 병합과 중성자별 충돌 신호를 감지해왔다. 하지만 이번 병합은 질량뿐 아니라 그 기원이 명확하지 않아 과학자들 사이에서 '금지된 병합'이라는 표현까지 나올 정도로 충격을 주고 있다. 영국 카디프대학교의 물리학자이자 LIGO 소속 연구자인 마크 해넘(Mark Hannam) 교수는 "이번 충돌은 기존 항성 진화 모델로는 설명되지 않는다"며 "이전에 병합된 작은 블랙홀들이 모여 현재의 블랙홀 쌍을 형성했을 가능성이 있다"고 설명했다. 그는 "이처럼 질량이 큰 쌍성계는 지금까지 관측된 바 없었으며, 블랙홀 형성 이론에 근본적인 재검토가 필요할 것"이라고 말했다. 병합 당시 두 블랙홀은 지구 자전 속도의 약 40만 배로 회전하고 있었으며, LIGO는 단 0.1초간 지속된 중력파 신호를 포착해 분석에 성공했다. 블랙홀 병합 과정은 통상 중력적으로 불안정해 신호가 검출되기 어려운 데 반해, 이번 사례는 병합이 놀라울 정도로 안정적이었고 강력한 중력파를 방출해 지구에까지 도달했다. 영국 포츠머스대학교의 찰리 호이(Charlie Hoy) 박사는 "이번 병합으로 생성된 블랙홀은 일반상대성이론이 허용하는 회전 속도 한계에 근접할 만큼 빠르게 회전하고 있다"며 "이로 인해 신호 해석이 더욱 복잡하고 이론적으로도 극한 상황에 해당한다"고 분석했다. 이번 발견은 영국 글래스고에서 7월 14일 개막하는 '일반상대성이론 및 중력파 국제학술대회(GR24-Amaldi)'에서 정식 발표되며, 이후 관측 데이터는 전 세계 연구진에게 공개돼 후속 분석이 진행될 예정이다. 연구에 참여한 영국 버밍엄대학교의 그레고리오 카룰로(Gregorio Carullo) 박사는 "GW231123 신호는 향후 수년에 걸쳐 정밀 해석이 이뤄져야 할 만큼 복잡하다"며 "보다 정교한 이론 모델이 등장해야 그 전모가 드러날 것"이라고 말했다. 중력파는 빛과 달리 우주의 어두운 영역을 '관측'할 수 있는 희귀한 수단으로, 블랙홀과 같은 극한 천체는 물론, 고대 별의 진화, 암흑물질 탐색 등에서도 결정적 단서를 제공할 수 있다. 블랙홀의 질량과 회전 속도에 대한 기존 관측 한계를 뛰어넘는 이번 발견은, 우주의 극단적 현상에 대한 인류의 이해를 다시 한 단계 끌어올리는 계기가 될 전망이다.
-
- 포커스온
-
[우주의 속삭임(128)] 태양 질량 225배 초대형 블랙홀 병합 포착⋯기존 우주 진화 모델에 도전장
-
-
[퓨처 Eyes(90)] "시간이 3차원"⋯물리학 100년 숙제 '양자 중력' 해법 제시한 새 이론
- 우리가 사는 세상을 '3차원 공간'과 '1차원 시간'이 합쳐진 4차원의 무대라고 보는 현대 물리학의 기본 생각에 도전하는 새로운 이론이 나왔다. 시간이 실제로는 3차원이고, 우리가 아는 공간은 그 시간의 작용 때문에 생겨난 결과물이라는 주장이다. 이 이론은 아주 작은 원자의 세계와 거대한 우주를 하나로 묶으려는 물리학의 가장 큰 숙제인 '양자 중력' 문제까지 풀 수 있다는 기대를 모은다. 이 혁신적인 이론을 내놓은 사람은 미국 알래스카 페어뱅크스 대학교의 군터 클레체슈카 교수다. 그는 "3차원의 시간이야말로 모든 것을 이루는 바탕이며, 마치 그림을 그리는 캔버스와 같다"고 설명한다. "우리가 아는 3차원 공간 역시 존재하지만, 그것은 캔버스 자체가 아니라 그 위에 칠해진 그림물감에 더 가깝다"는 것이다. 그렇다면 3차원 시간이란 무엇일까? 우리가 아는 시간은 끊임없이 앞으로만 나아가는 직선 길과 같다. 하지만 만약 이 길 옆으로 또 다른 길이 나 있다면 어떨까? 지금 이 순간에 머무르면서 옆길로 한 걸음 옮기면, 바로 그날의 다른 가능성을 탐험할 수 있다. 이것이 시간의 '두 번째 차원'이다. 그리고 이 가능성들 사이를 오갈 수 있게 하는 힘이나 통로가 바로 시간의 '세 번째 차원'이다. 실험값과 소수점 9자리까지 일치 이 이론이 특히 주목받는 까닭은 실제 세상과 딱 들어맞는 구체적인 예측을 내놓기 때문이다. 기존 물리학 이론(표준 모형)은 세상이 무엇으로 만들어졌는지 잘 설명하지만, '왜 입자들이 지금과 같은 무게(질량)를 갖는지'는 정확히 답하지 못했다. 클레체슈카 교수의 계산은 이 질문에 대한 놀라운 답을 보여준다. 세상에서 가장 무거운 기본 입자인 '톱 쿼크'의 무게를 예측한 값이 실제 실험에서 측정한 값과 거의 똑같았다. 특히 전자 한 개의 무게는 실제 측정값과 소수점 아홉째 자리까지 똑같이 계산해냈다. '유령 입자'라고 불리는 아주 가벼운 중성미자들의 무게까지 정확히 예측했다. △ 가장 무거운 중성미자(ν 3 ): 0.058±0.004 eV △ 중간 중성미자(ν 2 ): 0.0086±0.0003 eV △ 가장 가벼운 중성미자(ν 1 ): 0.0023±0.0002 eV '세대 문제'부터 '양자 중력'까지…물리학 난제 풀다 새로운 이론은 숫자를 맞추는 데서 그치지 않고, 물리학의 오랜 수수께끼들에 대한 실마리를 제공한다. 첫째, 왜 기본 입자들이 꼭 세 종류씩 짝을 이루는지(세대 문제)를 시간의 3차원 구조로 깔끔하게 설명한다. 둘째, 물질 세계가 왜 유독 '왼손잡이'를 선호하는 것처럼 보이는지(대칭성 위반)에 대한 궁금증도 다른 가정 없이 시간의 구조만으로 풀어낸다. 이전에도 시간을 여러 차원으로 보려는 시도는 있었지만, 종종 '원인이 결과보다 늦게 일어나는' 심각한 모순이 생겨났다. 클레체슈카 교수의 이론은 이 문제를 해결해, 여러 시간 차원 속에서도 원인과 결과의 순서가 뒤바뀌지 않음을 수학적으로 보장한다. 셋째, 아주 작은 세계와 거대한 세계의 규칙을 합치는 '양자 중력' 이론의 실마리를 찾았다는 점이 가장 큰 성과로 꼽힌다. 현재 물리학은 자연계의 4가지 기본 힘(전자기력, 강한 핵력, 약한 핵력, 중력) 중 중력을 제외한 세 힘은 '표준 모형'으로 설명하지만, 아인슈타인의 일반 상대성 이론이 설명하는 중력과는 합치지 못하고 있다. 이 둘을 통합해 4가지 힘을 모두 아우르는 '모든 것의 이론'을 만드는 것이 물리학자들의 오랜 꿈이다. 이론에서 현실로…앞으로 10년의 검증 시험대 이 놀라운 아이디어는 단순한 상상으로 끝나지 않을 전망이다. 앞으로 10년 안에 여러 최첨단 과학 실험을 통해 이론이 맞는지 직접 확인할 수 있기 때문이다. 클레체슈카 교수는 "과거의 3차원 시간 이론들은 구체적인 실험과 연결되지 않은 수학적 상상에 가까웠다"며 "내 연구는 이 개념을 여러 방법으로 검증할 수 있는, 시험 가능한 물리 이론으로 바꾸었다"고 강조했다. 구체적인 검증 방법과 일정은 다음과 같다. △ 중력파: 땅속에서 우주의 미세한 떨림인 '중력파'를 측정하는 '라이고(LIGO+)'와 같은 검출기로, 이론이 예측한 빛과의 미세한 속도 차이를 확인할 것이다. △ 새로운 입자: 스위스에 있는 거대한 입자 실험 장치인 '대형 강입자 충돌기(LHC)'를 이용해 이론이 예측하는 새로운 입자를 찾는다. 이 입자들은 우주의 숨겨진 물질인 '암흑물질'의 유력한 후보로도 여겨진다. △ 암흑 에너지: 2027년부터는 여러 우주 망원경이 우주를 가속 팽창시키는 미지의 힘인 '암흑 에너지'의 변화를 관측해, 이론의 예측과 들어맞는지 비교할 예정이다. 과학 넘어 철학까지…'현실'의 재정의 이러한 예측들이 실험을 통해 사실로 밝혀진다면, 과학계에 거대한 혁명이 일어날 수 있다. 우리가 당연하게 여겼던 시간과 공간, 그리고 현실 자체를 완전히 새로운 눈으로 보게 되기 때문이다. 이 이론은 우리에게 물리적 현실의 본질을 뿌리부터 다시 생각해야 할지 모른다는 질문을 던진다. 이 이론이 맞다면, 시간은 우리가 떠내려가는 강이 아니라, 온 세상이 헤엄치는 거대한 바다일지도 모른다.
-
- 포커스온
-
[퓨처 Eyes(90)] "시간이 3차원"⋯물리학 100년 숙제 '양자 중력' 해법 제시한 새 이론
-
-
[우주의 속삭임(123)] 은하 외곽서 별을 집어삼킨 유영 블랙홀⋯사상 첫 광학 관측
- UC버클리 천문학자들이 은하 중심 아닌 외곽에서 발생한 중력파 후보 현상을 포착했다. 은하 중심이 아닌 외곽에서 거대한 블랙홀이 별을 집어삼키는 극적인 장면이 처음으로 포착됐다고 과학 전문매체 사이테크 데일리가 19일(현지시간) 보도했다. 이는 장기적으로 두 초대질량 블랙홀의 병합 가능성을 보여주는 단초로, 향후 중력파 관측의 신기원을 열 것이라는 기대를 모으고 있다. 미국 UC버클리 천문학자들은 최근 AT2024tvd로 명명된 현상을 관측하고, 그 원인이 은하 외곽을 떠도는 블랙홀의 '조석파괴사건(TDE, Tidal Disruption Event)'이라는 사실을 밝혀냈다. 이 블랙홀은 태양 질량의 약 100만 배에 달하며, 자전 속도가 빠른 별 하나를 강한 중력으로 찢어낸 뒤 그 잔해에서 발생한 섬광을 통해 존재를 드러냈다. 이번 발견은 캘로포니아주 팔로마 천문대에 설치된 츠비키 천이 관측소(ZTF, Zwicky Transient Facility)의 광학 카메라를 통해 이루어졌으며, 이후 허블 우주망원경, X선, 전파망원경 등 다중 파장 관측으로 확정됐다. 이러한 유형의 TDE는 기존에 은하 중심에서만 발견됐으며, 비핵 영역(off-nuclear)에서 광학적으로 관측된 것은 이번이 처음이다. 두 블랙홀의 공존…장기 병합 가능성 주목 은하 중심부에도 이미 하나의 초대질량 블랙홀이 존재하고 있는 상황에서, 외곽에 또 다른 거대한 블랙홀이 존재한다는 것은 은하 병합의 잔재로 해석된다. 연구팀은 이 떠돌이 블랙홀이 과거 소형 은하의 중심이었던 블랙홀로, 병합 후 큰 은하에 포획됐을 가능성을 제시했다. 현재 은하 중심에 있는 블랙홀은 태양 질량의 약 1억 배이며, 근처 가스와 물질을 빨아들이며 성장 중이다. 두 블랙홀이 현재는 수천 광년 떨어져 있지만, 수십억 년 후에는 중력 상호작용을 통해 병합될 가능성도 배제할 수 없다는 것이 연구진의 설명이다. UC버클리의 라파엘라 마르구티(Raffaella Margutti) 교수는 "지금처럼 TDE를 통해 두 블랙홀이 근접해 있는 사례를 관측한 것은 처음"이라며 "향후 LISA(Laser Interferometer Space Antenna) 미션을 통해 이 병합에서 발생하는 중력파를 포착할 수 있을 것"이라고 전망했다. TDE, 보이지 않는 블랙홀을 밝히는 '플래시' 블랙홀은 그 자체로 빛을 방출하지 않기 때문에 직접 관측이 불가능하다. 하지만 주변의 별이나 가스가 블랙홀의 중력에 의해 찢겨나가며 생성되는 밝고 뜨거운 원반(강착 원반)과 방출되는 빛은 관측이 가능하다. TDE는 이러한 현상의 대표적 사례로, 블랙홀이 별을 삼키는 과정에서 발생하는 폭발적인 섬광이다. ZTF는 2018년 이후 현재까지 100건 가까운 TDE를 은하 중심에서 포착했으며, 이번처럼 외곽에서 발생한 사례는 전례가 없었다. 이는 블랙홀들이 은하 내에서 떠돌고 있을 수 있음을 시사하는 것이며, 그 수는 지금까지 예측보다 더 많을 가능성을 암시한다. 공동 저자인 라이언 초녹(Ryan Chornock) 교수는 "은하가 병합하면 블랙홀도 함께 들어오지만, 곧바로 병합하진 않는다"며 "이처럼 은하 내부를 떠도는 '유영 블랙홀'이 존재할 수 있다는 이론이 이번에 관측을 통해 확인됐다"고 말했다. LISA, 수백만 태양질량급 병합 중력파 탐지 준비 유럽우주국(ESA)과 미국항공우주국(나사·NASA)이 공동으로 추진 중인 리사(LISA) 우주 미션은 향후 10년 내 발사를 목표로 하고 있다. LISA는 수백만 태양질량 규모의 블랙홀 병합에서 나오는 중력파를 탐지하는 데 최적화된 장비로, 지상 기반의 LIGO나 VIRGO가 관측하지 못하는 중간질량대 영역을 담당하게 된다. 이번 AT2024tvd의 발견은 LISA의 과학적 타당성을 높이는 결정적 사례로 꼽힌다. TDE 같은 일시적 사건을 체계적으로 탐색한다면, 향후 LISA가 관측할 수 있는 병합 대상 블랙홀을 사전에 포착할 수도 있기 때문이다. "우주는 조용히 병합 중…우리는 단지 그 흔적을 따라간다" 연구 책임자인 유한 야오(Yuhan Yao) 박사는 "보통은 은하 중심에서만 찾던 현상이 외곽에서 나타났다는 것 자체가 우주 구조 형성의 과정을 다시 생각하게 한다"며, "이번 발견은 하나의 시작이며, 더 많은 '숨은 블랙홀'을 찾을 단서가 될 것"이라고 강조했다. 이번 연구는 미국 천문학 저널 레터스(The Astrophysical Journal Letters)에 게재됐다.
-
- 포커스온
-
[우주의 속삭임(123)] 은하 외곽서 별을 집어삼킨 유영 블랙홀⋯사상 첫 광학 관측
-
-
[퓨처 Eyes(83)] 초강력 자기장 별 '마그네타', 금 등 무거운 원소 새 기원으로 떠올라
- 우리가 일상에서 사용하는 금이나 은, 백금 같은 귀금속은 과연 어디서 왔을까? 과학자들은 오랫동안 이 무거운 원소들이 우주의 장구한 역사 속, 아주 특별하고 강력한 사건을 통해 생겨났을 것이라고 추측해왔다. 최근까지 유력한 후보는 '중성자별'이라는 매우 무겁고 단단한 천체 두 개가 충돌하며 일으키는 거대한 폭발이었다. 그런데 최근, 과학자들이 금과 같은 무거운 원소를 만드는 또 다른 '공장' 후보를 발견했다는 연구 결과가 나왔다. 바로 '마그네타'라는 초강력 자기장을 가진 특별한 중성자별이 일으키는 거대한 우주 폭발이다. 무거운 원소 기원의 오랜 의문 138억 년 전 빅뱅으로 우주가 처음 탄생했을 때는 수소, 헬륨 같은 가벼운 원소들만 존재했다. 이후 별 내부 핵융합으로 탄소, 산소, 철 등 좀 더 무거운 원소가 생겨났다. 별이 수명을 다하고 폭발(초신성 폭발)할 때 이 원소들은 우주 공간으로 퍼져나가 새로운 별과 행성을 만드는 재료가 되었다. 그러나 금, 은, 백금, 우라늄처럼 철보다 훨씬 무거운 원소들은 일반적인 별의 핵융합이나 초신성 폭발만으로는 만들어지기 어렵다. 이들을 만들기 위해서는 훨씬 더 극한의 환경과 특별한 과정이 필요하다. 과학자들은 이 과정을 'r-과정(rapid neutron capture process)'이라고 부른다. 원자핵이 짧은 시간에 중성자를 빠르게 흡수하며 무거운 원소로 변신하는 과정이다. 이 r-과정이 정확히 우주 어디서 일어나는지가 오랜 숙제였다. 2017년, 천문학계는 큰 발견을 했다. 지구에서 약 1억 3000만 광년 떨어진 곳에서 두 개의 중성자별이 충돌하는 장면을 포착한 것이다. 중성자별은 태양보다 훨씬 무거운 별이 최후를 맞이할 때 남는 핵으로, 각설탕 한 조각 크기가 수억 톤에 달할 정도로 밀도가 높다. 이 두 개의 중성자별이 충돌하면서 시공간이 휘어지는 중력파와 함께 엄청난 빛과 에너지가 뿜어져 나왔다. 과학자들은 이 현상을 '킬로노바'라고 부른다. 이 킬로노바 현상 분석 결과, 금, 백금, 납 등 다양한 무거운 원소가 r-과정으로 대량 생성됨을 처음 확인했다. 마치 우주에 있는 거대한 '금 공장'과 같았다. 이 발견으로 중성자별 충돌은 무거운 원소의 주요 기원 중 하나로 확실하게 자리 잡았다. 그러나 킬로노바만으로는 모든 설명이 부족했다. 컬럼비아 대학교의 천문학자 아닐러드 파텔 박사는 "중성자별 합병은 우리 은하의 역사에서 비교적 후기에 발생하는 현상"이라고 지적한다. 우주 초기에 존재했던 무거운 원소까지 설명하기는 어려웠다. 과학자들은 r-과정이 일어날 수 있는 또 다른 장소를 찾아야 했다. 특별한 중성자별 '마그네타' 주목 새로운 연구는 바로 이 지점에서 출발한다. 연구팀이 주목한 것은 '마그네타'다. 마그네타는 중성자별 중에서도 지구 자기장의 수조 배에 이르는 초강력 자기장을 가진 특별한 천체다. 과학자들은 마그네타가 어떻게 형성되는지 정확히 밝히려고 노력 중이며, 우주 탄생 후 약 2억 년 안에 첫 별들과 함께 등장했을 것으로 추정한다. 마그네타는 때때로 표면에서 거대한 폭발을 일으키는데, 이를 '거대 플레어(giant flare)'라고 부른다. 이는 마치 지구에서 지진이 일어나듯, 중성자별 표면 아래의 움직임 때문에 지각에 쌓인 스트레스가 터져 나오며 발생하는 '별 지진(starquake)'과 비슷하다. 이 거대 플레어는 태양이 100만 년 동안 방출하는 것보다 더 많은 에너지를 단 몇 초 만에 쏟아낼 정도로 강력하며, 별 표면의 물질들을 고속으로 우주 공간에 내뿜는다. 연구팀은 2004년 12월, 인근 마그네타에서 관측된 거대 플레어 데이터에 주목했다. 당시 이 폭발 자체도 엄청났지만, 더 흥미로운 것은 폭발이 있고 약 10분 뒤 감지된 정체불명 희미한 '잔광(afterglow)' 신호에 있었다. 이 잔광 신호의 정체는 20년간 미스터리였다. '잔광' 신호에서 찾은 결정적 단서 컬럼비아 대학교와 플랫아이언 연구소의 브라이언 메츠거 교수 등 연구진은 마그네타의 거대 플레어가 r-과정을 통해 무거운 원소를 만들 수 있다는 이론 모델을 개발했다. 이 모델은 플레어로 분출된 뜨겁고 중성자가 풍부한 물질 속에서 r-과정이 일어나 금 같은 무거운 원소가 생성되며, 이 과정에서 특정 감마선이 나올 것으로 예측했다. 루이지애나 주립대학교의 에릭 번스 교수는 과거 데이터를 뒤져 2004년 마그네타 플레어의 잔광 신호를 찾아냈다. 놀랍게도 이 잔광 감마선 신호의 특징이 연구팀 이론 모델 예측과 거의 완벽히 일치했다. 마그네타 거대 폭발이 r-과정으로 무거운 원소를 생성했다는 강력한 증거가 될 수 있다. 나사의 인테그랄(INTEGRAL), 레시(RHESSI), 윈드(Wind) 위성 등 과거 임무 데이터들이 이 발견을 뒷받침했다. 파텔 박사는 "우리 중 누구도 20년 동안 데이터가 그냥 거기에 있었을 것이라고는, 그리고 우리의 이론 예측이 그렇게 완벽하게 일치할 것이라고는 상상하지 못했다"며 "우리 휴대폰이나 노트북 속 부품 일부가 우리 은하 역사 속 이런 극한의 폭발에서 만들어졌다고 생각하니 매우 흥미롭다"고 밝혔다. 새로운 가능성, 신중론 그리고 미래 이 연구 결과는 r-과정이 중성자별 충돌뿐 아니라 마그네타 거대 플레어 같은 다른 환경에서도 일어날 수 있음을 보여준다. 연구에 참여하지 않은 오클라호마 대학교의 존 카원 교수는 "r-과정이 다른 천체물리 현장에도 존재한다는 좋은 증거"라고 평가했다. 또한, 마그네타는 중성자별 충돌에 비해 우리 은하 내에서 더 가까이 발생할 수 있어, 앞으로 무거운 원소 생성 과정을 더 자세히 연구할 기회를 제공할 수 있다. 인디애나 대학교 블루밍턴의 찰스 호로위츠 박사는 "다음 마그네타 거대 플레어에서는 개별 원소를 직접 검출할 수도 있다는 점이 가장 흥미로운 가능성"이라고 기대감을 나타냈다. 그러나 아직 단정하기는 이르다는 신중론도 있다. 2017년 중성자별 충돌에서 방출된 엑스선 발견을 이끌었던 로마 대학교의 엘레오노라 트로야 박사는 이번 마그네타 플레어 증거가 "2017년에 수집된 증거와는 비교할 수 없다"고 지적했다. 그는 마그네타가 만드는 금 생산은 "가능한 설명 중 하나일 뿐이며, 마그네타는 복잡한 천체라 금 대신 다른 가벼운 금속을 만들 수도 있다"고 덧붙였다. 따라서 "금의 새로운 원천을 발견했다기보다는, 생산을 위한 대안 경로를 제안한 것으로 봐야 한다"고 강조했다. 연구팀은 마그네타 거대 플레어가 우리 은하에 있는 철보다 무거운 원소의 약 10% 정도를 설명할 수 있을 것으로 추정한다. 여전히 나머지 90%의 무거운 원소를 만드는 다른 과정이나 장소가 필요하다는 뜻이다. 빠르게 회전하는 중성자별을 탄생시키는 특별한 종류의 초신성 등 다른 후보들도 떠오른다. 파텔 박사는 "이번 발견은 우리를 올바른 그림에 더 가깝게 이끌지만, 다른 가능한 r-과정 장소와 결합해야 한다"고 말했다. 2027년 발사 예정인 나사의 새로운 감마선 망원경 COSI(콤프턴 분광계 및 영상장치)는 앞으로 마그네타 거대 플레어를 직접 관측하고 생성되는 원소를 식별하여 이 수수께끼를 푸는 데 중요한 역할을 할 것으로 기대를 모은다. 우리가 날마다 사용하는 일상 생활 속 금속들이 사실은 수십억 년 전, 상상조차 할 수 없는 우주의 격렬한 사건 속에서 태어났다는 사실이 경이롭다. 과학자들의 끈질긴 탐구를 통해 우리는 우주와 우리 자신의 기원을 조금씩 더 깊이 이해하게 될 것이다.
-
- 포커스온
-
[퓨처 Eyes(83)] 초강력 자기장 별 '마그네타', 금 등 무거운 원소 새 기원으로 떠올라
-
-
[신소재 신기술(123)] NASA, 중력파 관측소용 프로토타입 망원경 공개
- 나사(NASA)가 블랙홀과 다른 우주적 근원이 합쳐지면서 발생하는 시공간 파장인 중력파를 우주에서 감지할 수 있는 6개의 실물 크기 프로토타입 우주 망원경을 홈페이지를 통해 공개했다. 우주 망원경은 향후 10년 동안 진행될 나사의 우주 미션 리사(LISA: Laser Interferometer Space Antenna) 임무에 사용될 계획이다. 망원경은 2개가 한 쌍을 이루어 우주선에 탑재된다. 중력파를 관측하는 차세대 리사 임무는 유럽우주국(ESA)과 나사가 협력해 진행하는 미션으로, 레이저를 사용해 태양보다 더 광대하게 분산된 3대의 우주선 사이의 정확한 거리를 측정해 중력파를 감지하는 것이다. 거리 측정은 피코미터 또는 1조 분의 1미터 수준의 정밀도로 이루어진다. 삼각형 배열의 각 면은 약 250만km를 측정한다. 미국 메릴랜드주의 나사 고다드 우주비행센터의 라이언 드로사 박사는 "각 우주선에 탑재된 쌍둥이 망원경은 적외선 레이저 빔을 송수신해 동료 우주선을 추적하며, 리사 임무에 쓰이는 6대의 망원경은 나사가 모두 공급한다. 엔지니어링 개발 망원경 유닛(Engineering Development Unit Telescope)이라는 이름의 이 프로토타입은 우주를 비행할 우주선 하드웨어를 제작하는 작업을 지원하게 된다. 뉴욕주 로체스터에 소재한 L3해리스테크놀로지(L3Harris Technologies)에서 제조 및 조립한 프로토타입 망원경은 지난 5월 고다드 센터에 도착했다. 망원경의 주 거울은 적외선 레이저를 매우 잘 반사하고, 차가운 공간에 노출된 상태에서 열 손실을 줄이기 위해 금으로 코팅됐다. 망원경은 실내 온도에 가까울 때 가장 잘 작동한다. 프로토타입 망원경은 모두 독일 마인츠에 소재한 쇼트(Schott)에서 제조한 호박색 유리 세라믹(Zerodur)으로 만들어졌다. 이 소재는 폭넓은 온도 범위에서 모양이 거의 변하지 않기 때문에 망원경 거울과 고정밀이 필요한 응용 분야에 널리 사용된다. 리사 임무는 2030년대 중반에 시작될 예정이다.
-
- IT/바이오
-
[신소재 신기술(123)] NASA, 중력파 관측소용 프로토타입 망원경 공개
-
-
[우주의 속삭임(59)] 블랙홀, 냉각된 별일까? 아인슈타인 이론 도전하는 새로운 가설
- 블랙홀은 '얼어붙은 별'이라는 새로운 이론이 등장했다. 극도로 강력한 중력을 가진 블랙홀은, 그 중력이 너무 강해서 빛조차도 탈출할 수 없기 때문에 '검은 구멍'이라고 불린다. 또한 블랙홀은 엄청난 질량을 아주 작은 공간에 압축하고 있어서, 주변의 모든 것을 끌어당긴다. 블랙홀의 중심에는 '특이점'이라고 불리는 점이 있다. 이곳에서는 밀도와 중력이 무한대가 되어 우리가 알고 있는 물리 법칙이 적용되지 않는다. 또한 빛 조차도 빠져나갈수 없는 경계인 '사건의 지평선'이라는 두 가지 특징을 갖는다. 하지만 이 모델은 양자 역학이 도입되면서 심각한 문제에 부딪혔다. 게다가 1970년대에 스티븐 호킹은 사건의 지평선 근처의 양자 효과가 우주 진공에 입자를 생성하는 '호킹 복사(호킹의 복사 역설)'라고 알려진 과정을 일으킨다는 사실을 발견했다. 블랙홀은 이처럼 과학 법칙을 거스르는 특이한 존재로, 해결할 수 없는 많은 역설과 연관되어 왔다. 최근 남아프리카공화국의 로즈대학교와 이스라엘의 벤구리온 대학교 공동 연구팀은 블랙홀에 대한 우리의 모든 지식을 바꿀 수 있는 새로운 이론을 제시했다. 연구팀은 얼어붙은 별 모델에 대한 상세한 이론 분석을 수행했으며, 이 모델이 사건의 지평선과 특이점이 모두 없기 때문에 블랙홀이 실제로 '얼어붙은 별(frozen star)'일 수 있다고 주장했다. 얼어붙은 별은 냉각되어 더 이상 빛이나 열을 방출하지 않는 별의 잔해로, 흑색 왜성(black dwarf)이라고도 불리며 별의 마지막 단계를 나타낸다. 일반적으로 과학자들은 별이 흑색 왜성에 도달하는데 수 조년이 걸린다고 추정한다. 우리 우주는 137억년 밖에 되지 않았기 때문에 아직 흑색 왜성은 존재하지 않는다. 그러나 연구팀은 이번 연구에서 흑색 왜성과 블랙홀 사이의 유사성을 자세히 분석해, 기존 블랙홀 모델과 관련된 많은 역설을 해결할 수 있음을 발견했다. 현재 블랙홀 모델의 문제점 과학계는 블랙홀에 관해서는 1915년 알버트 아인슈타인이 일반 상대성 이론에서 제시한 내용을 따르고 있다. 아인슈타인에 따르면 블랙홀에는 두 가지 특징이 있다. 첫째, 중심에 '특이점(singularity)'이라고 하는 무한 밀도의 점이 존재한다. 둘째, 블랙홀에는 '사건의 지평선(event horizon)'이 있어 빛조차도 탈출할 수 없는 경계를 형성한다. 이 이론은 널리 받아들여지고 있지만, 몇 가지 문제점에 직면해 있다. 예를 들어 실제 관측 결과는 자연에 무한대가 존재하지 않음을 시사하며, 이것이 물리학에서 모든 것이 유한하다고 간주되는 이유다. 또 다른 모순은 앞서 말했듯이 스티븐 호킹의 복사 역설에서 발생한다. 이 역설은 블랙홀이 복사를 방출하고 시간이 지남에 따라 질량을 천천히 잃어 결국 완전히 증발한다고 제안한다. 그러나 아인슈타인은 블랙홀에서 아무것도 빠져나갈 수 없다고 했다. 또한 블랙홀이 증발하면 블랙홀을 형성한 물질이 파괴된다. 그러나 이것은 정보 보존의 법칙에 위배된다. 정보 보존 법칙은 물질과 마찬가지로 정보도 생성되거나 파괴될 수 없다고 명시하며, 양자 역학의 기초를 형성한다. 연구팀은 블랙홀을 특이점과 사건의 지평선이 없는 '얼어붙은 별'로 간주하면 이러한 모든 역설이 해결된다고 밝혔다. 블랙홀은 얼어붙은 별일까? 연구팀은 블랙홀의 엔트로피 및 열 복사와 같은 열역학적 특성의 이론적 값이 흑색 왜성의 값과 유사함을 입증했다. 이번 연구의 제1 저자인 이스라엘 벤 구리온 대학교의 라미 브루스타인 물리학 교수는 라이브 사이언스와의 인터뷰에서 "우리는 얼어붙은 별이 사건의 지평선이 없지만 (거의) 완벽한 흡수체처럼 행동하고 중력파의 원천으로 작용하는 방법을 보여주었다"며 이러한 물체는 블랙홀처럼 그 위에 떨어지는 거의 모든 것을 흡수할 수 있다고 지적했다. 그는 "게다가 이 천체들은 기존 블랙홀 모델과 동일한 외부 기하학적 구조를 갖고 있으며 기존의 열역학적 특성을 재현한다"고 덧붙였다. 블랙홀이 얼어붙은 별이라면 무한 밀도의 점이나 특이점이 없다는 것을 의미한다. 이는 블랙홀이 실제 세계의 물체와 동일한 유한성 관련 규칙을 따른다는 것을 시사한다. 또한 사건의 지평선이 없다는 것은 복사와 입자가 경계를 탈출할 수 있음을 의미하며, 이는 호킹이 블랙홀에서 빛이 방출된다는 주장과 일치한다. 브루스타인은 "우리는 얼어붙은 별이 지평선이 없음에도 불구하고 (거의) 완벽한 흡수체처럼 행동하고 중력파의 원천 역할을 하는 방법을 보여주었다. 또한 기존 블랙홀 모델과 동일한 외부 기하학적 구조를 생성하고 기존의 열역학적 특성을 재현한다"고 말했다. 그러나 이 연구에도 몇 가지 한계가 있다. 예를 들어 흑색 왜성은 내부 구조를 가지고 있다고 믿어지지만 블랙홀의 경우에는 그렇지 않다. 또한 블랙홀이 실제로 얼어붙은 별이라는 것을 확인하는 실험적 증거는 없다. 따라서 이 가설을 검증하려면 추가 연구가 필요하다. 이 연구는 '피지컬 리뷰 D(physical Review D)' 저널에 게재됐다.
-
- IT/바이오
-
[우주의 속삭임(59)] 블랙홀, 냉각된 별일까? 아인슈타인 이론 도전하는 새로운 가설
-
-
[우주의 속삭임(54)] 허블·찬드라 망원경, 충돌하는 은하 속 초거대 블랙홀 쌍 발견
- 미 항공우주국(나사·NASA)의 허블 망원경과 찬드라 X선 망원경을 이용해 약 300광년 떨어진 초거대 블랙홀 쌍이 관측됐다. 나사 허블사이트는 9일(현지시간) 홈페이지를 통해 이 블랙홀들은 충돌 중인 두 은하 중심에 위치하며, 가스와 먼지 유입으로 활동성 은하핵(AGN)으로 밝게 빛나고 있다고 밝혔다. 유럽우주국(ESA) 또한 같은 날 나사/ESA 허블 망원경과 NASA의 찬드라 X선 관측소는 매우 가까운 거리에 있는 두 개의 초 거대 블랙홀의 존재를 확인했다고 전했다. 나사에 따르면 이 AGN 쌍은 가시광선과 X 선 관측을 통해 발견된 지역 우주에서 가장 가까운 쌍이다. 된 이 쌍은 이전에 발견된 수십 개의 블랙홀 쌍보다 훨씬 가까운 거리에 위치한다. 이러한 AGN 쌍은 은하 병합이 빈번했던 초기 우주에서 더 흔했을 것으로 추정된다. 약 8억광년 떨어진 이번 발견은 가까운 곳에서 이를 관찰할 수 있는 독특한 기회를 제공한다. 이 발견은 허블 망원경의 고해상도 이미지에서 은하 내 작은 영역에 밝은 산소 가스가 집중되어 있음을 나타내는 세 개의 광학 회절 스파이크가 발견되면서 우연히 이루어졌다. 논문의 수석 저자인 매사추세츠 케임브리지에 있는 하버드 및 스미소니언 천체물리학 센터의 안나 트린다데 팔카오 박사는 "우리는 이런 것을 볼 수 있을 것이라고 예상하지 못했다"며 "이 모습은 가까운 우주에서 흔히 볼 수 있는 모습이 아니며 은하 내부에서 다른 일이 일어나고 있음을 말해준다"고 밝혔다. 연구팀은 찬드라 망원경을 사용해 X 선으로 동일한 은하를 조사했고, 허블 망원경으로 관측된 밝은 광점과 일치하는 두 개의 강력한 고에너지 방출원을 발견했다. 이를 통해 두 개의 블랙홀이 가까이 위치하고 있다는 결론을 내렸다. 연구팀은 추가적으로 뉴멕시코에 있는 칼 G. 잰스키 초대형 전파 망원경의 자료를 활용해 이 블랙홀 쌍이 강력한 전파를 방출한다는 사실도 확인했다. 허블 망원경이 관측한 세 번째 밝은 광원의 기원은 아직 밝혀지지 않았으며, 추가적인 데이터 분석이 필요하다. 나사는 "두 초거대 블랙홀은 각각 원래 은하의 중심에 있었지만, 은하 병합으로 인해 가까워졌다"며 "앞으로 두 블랙홀은 계속해서 서로에게 접근하여 결국 병합될 것이며, 이 과정에서 시공간에 중력파를 발생시킬 것"이라고 추정했다. 미국 국립과학재단의 레이저 간섭계 중력파 관측소(LIGO)는 이미 수십 개의 항성 질량 블략홀 병합에서 발생하는 중력파를 감지했지만, 초거대 블랙홀 병합에서 발생하는 더 긴 파장의 중력하는 LIGO로 감지할 수 없다. 차세대 중력파 검출기인 LISA(Laser Interferometer Space Antenna)는 2030년대 중반 발사될 예정이며, 수백만 마일 떨어진 세 개의 검출기를 통해 심우주에서 발생하는 긴 파장의 중력파를 포착할 수 있을 것으로 기대된다. 허블망원경은 나사와 유럽우주국(ESA)간의 국제 협력 프로젝트로 30년 이상 운영되어 왔다. 팔카오는 "허블의 놀라운 분해능이 없었다면 우리는 이 복잡한 현상을 볼 수 없었을 것"이라고 말했다. 이 연구 결과는 9일 '천체물리학' 저널에 게재됐다.
-
- IT/바이오
-
[우주의 속삭임(54)] 허블·찬드라 망원경, 충돌하는 은하 속 초거대 블랙홀 쌍 발견
-
-
[우주의 속삭임(49)] 블랙홀과 암흑물질, 빅뱅 이전부터 존재했다?
- 블랙홀과 암흑물질의 비밀은 빅뱅 이전의 우주에 ‘비밀스러운 다른 모습’이 있었을 수 있다는 새로운 '바운싱' 우주론을 암시하고 있다는 새로운 연구가 발표돼 주목된다고 라이브사이언스가 전했다. 연구에서 제시하는 '바운싱'은 빅뱅 이전에 수축했다가 팽창으로 '튀어오르는 상황'을 의미한다. 우주론과 우주미립자 저널(Journal of Cosmology and Astroparticle Physics)에 최근 게재된 연구에 따르면 우주는 빅뱅 이전에 먼저 응축되는 기간을 겪었으며, 이로 인해 암흑물질의 수수께끼 같은 본질을 설명할 수 있는 블랙홀이 생성되었을 가능성이 있다. 연구에서 제시된 이론은 "우주는 초기 형성 단계에 먼저 수축해 극도로 밀도가 높은 상태에 도달한 후, 다음 단계에서 반등해 팽창, 즉 빅뱅 단계에 진입해 오늘날의 우주가 형성됐다"는 제안이다. 빅뱅 전에 수축이 먼저 일어났고, 이로 인해 밀도가 증가해 변동하면서 빅뱅 및 현재 관찰되는 가속 팽창으로 이어졌다는 것. 연구진은 수축의 정도를 오늘날보다 약 50배 작은 크기까지 응축되었다고 추정했다. 이는 우주가 빅뱅이라는 단일 사건에서 유래해 그 후부터 빠르게 팽창했다는 전통적인 우주론에 도전하는 것이다. 연구에 따르면 '수축 후 반등'은 블랙홀과 암흑물질에 대한 이해에 심오한 결과를 가져올 수 있다. 또 연구는 우주의 수축 단계에서 밀도 변동으로 인해 작은 블랙홀이 생겨났을 수 있다고 추정하고 있다. 이러한 원시 블랙홀은 반등을 견뎌내고 현재의 팽창 단계로 지속돼 우주 물질의 약 80%를 차지하는 암흑물질을 구성할 수 있다. 암흑물질은 여전히 수수께끼로 남아 있는 영역으로 빛을 반사, 흡수 또는 방출하지 않는다. 프랑스 국립 과학연구센터(CNRS)의 패트릭 피터 박사는 "작은 원시 블랙홀은 우주의 아주 초기 단계에서 생성될 수 있으며, 블랙홀이 극도로 작지 않다면 지금도 여전히 존재할 것이다. 이는 호킹(톡톡 튐) 복사로 인한 붕괴가 블랙홀을 제거하기에 충분치 않을 것이기 때문이다. 소행성 질량과 거의 비슷한 무게를 가진 블랙홀은 암흑물질 규명에 기여하거나 심지어 완전히 해결할 수도 있다"고 설명했다. 이 튀는 우주론 이론이 사실로 입증된다면, 특히 블랙홀과 암흑물질과 관련해 우주에 대한 이해에 혁명을 일으킬 수 있다. 원시 블랙홀의 존재는 빛과의 상호 작용이 부족해 과학자들이 오랫동안 이해하지 못했던 암흑물질의 본질에 대한 설득력 있는 정보를 제공할 수 있다. 한편, 천문학계는 '레이저 간섭계 우주 안테나(LISA)와 아인슈타인 망원경' 등 다가올 중력파 검출기가 이러한 원시 블랙홀이 생성되는 동안 방출된 중력파를 식별할 수 있는 기능을 갖추기를 희망하고 있다. 이 중력파가 감지된다면 이런 블랙홀이 암흑물질을 구성한다는 가설을 뒷받침하는 중요한 증거가 될 수 있다.
-
- IT/바이오
-
[우주의 속삭임(49)] 블랙홀과 암흑물질, 빅뱅 이전부터 존재했다?
-
-
[우주의 속삭임(1)] 은하계에서 가장 큰 항성 블랙홀 발견
- 천문학자들이 은하계에서 가장 큰 항성 블랙홀을 발견했으며, 그 질량은 무려 태양의 33배에 달하는 것으로 밝혀졌다고 PHYS가 전했다. 파리 천문대 국립과학연구센터(CNRS)의 천문학자 파스콸 파누조는 '가이아 BH3'라는 이름의 이 블랙홀은 유럽 우주국의 가이아(Gaia) 미션에서 수집한 데이터에서 우연히 발견되었다고 밝혔다. 가이아는 독수리자리 방향으로 지구에서 2000광년 떨어진 BH3에 위치해 있다. 가이아 망원경은 하늘에 있는 별들의 정확한 위치를 알려준다. 그 덕분에 천문학자들은 별들의 궤도를 특성화하고 '가이아 BH3' 블랙홀의 존재 확인은 물론 질량까지 측정하는 데 성공했다. 지상 망원경을 통해 추가로 관측한 결과, '가이아 BH3' 블랙홀은 이미 은하계에서 발견된 기존의 항성 블랙홀보다 질량이 훨씬 더 큰 블랙홀이라는 것이 확인됐다. 파누조는 "지금까지 발견되지 않은 채 숨어 있던 거대 질량 블랙홀을 발견할 것이라고는 아무도 예상하지 못했다. 이것은 일생에 단 한 번 있을 수 있는 놀라운 발견이었다“라고 말했다. 이 블랙홀은 자신만의 궤도를 운항하는 동반성에서 '흔들리는' 움직임을 발견하면서 나타났다고 한다. 항성 블랙홀은 생애 마지막에 거대한 별이 붕괴하면서 생성되며, 아직 생성 여부가 알려지지 않은 초거대 질량 블랙홀보다는 규모가 작다. 이들 초거대 질량 블랙홀들은 이미 중력파를 통해 먼 은하계에서 발견되었다. '가이아 BH3'는 비활성(휴면) 블랙홀이며 너무 멀리 떨어져 있고 X선을 방출하지 않아 감지하기 어려웠다고 한다. 가이아 망원경은 종래 은하수에서 처음 두 개의 비활성 블랙홀(가이아 BH1 및 가이아 BH2)을 식별한 바 있다. 가이아는 지난 10년 동안 지구에서 150만km 떨어진 곳에서 은하계를 관측해 왔으며, 2022년에는 18억 개가 넘는 별의 위치와 움직임을 보여주는 3D 지도도 제작했다.
-
- IT/바이오
-
[우주의 속삭임(1)] 은하계에서 가장 큰 항성 블랙홀 발견



