검색
-
-
레이저 가공 HEA, 3D 프린팅으로 강도·연성 향상
- 최근 레이저와 3D 프린팅 기술을 활용해 강도가 높고 유연성을 갖춘 새로운 형태의 합금을 개발하는 데 성공했다. 합금이란, 기본 금속에 다른 금속을 섞어 고온에서 녹인 후 식혀 만들어진, 원래 금속과는 다른 성질을 가진 새로운 금속 물질을 말한다. 이러한 합금을 제작하는 주된 목적은 기계적 성질을 개선하고, 부족한 특성을 보완하여 금속의 기능을 증진시키기 위함이다. 과학기술 전문 매체 사이테크데일리(SciTechDaily)는 레이저 기반 적층 제조 방식을 이용하여 더 강력하고 파손 가능성이 낮은 고엔트로피 합금(HEA)을 만드는 방법을 소개했다. '고엔트로피 합금(HEA:High entropy alloys)'은 기존의 합금 제조 방식과 비교했을 때 뛰어난 강도와 내구성을 제공하며, 합금의 적용 범위를 확장시킬 수 있는 잠재력을 가지고 있다. HEA는 심각한 마모, 극한의 온도, 방사선 및 높은 압력과 관련된 응용 분야에서 사용가능하다. 3D 프린팅, 또는 적층 가공(AM)으로 알려진 기술을 사용해 만들 수 있는 합금은 일반적으로 연성이 부족하다는 단점을 가지고 있다. 이는 3D 프린팅을 통해 제작된 고엔트로피 합금이 형태를 유지하는 데 어려움을 겪고, 하중을 받을 때 충분히 변형되거나 늘어나지 않아 쉽게 파손될 수 있다는 것을 의미한다. 그러나 최근 과학자들은 레이저 기반의 적층 가공 방식을 사용하여, 이러한 연성 문제를 개선한 더욱 강하고 연성이 뛰어난 고엔트로피 합금을 개발하는 데 성공했다. 이들은 이러한 성능 향상의 기본 메커니즘을 더 깊이 이해하기 위해 중성자와 X선 산란, 그리고 전자 현미경과 같은 고급 분석 기술을 활용했다. 이러한 연구 결과는 3D 프린팅 합금의 사용 범위를 확장하고, 그것이 적용될 수 있는 산업 분야를 다양화하는 데 기여할 수 있을 것으로 기대된다. 특히, 연성과 강도가 모두 향상된 새로운 형태의 합금은 더욱 까다로운 응용 분야에서도 활용될 수 있을 것으로 전망된다. 잠재적인 산업 응용과 에너지 효율성 산업계는 미래에 제조 과정에서 더욱 강력하고 형태를 쉽게 잡을 수 있는 고엔트로피 합금을 사용 가능할 것으로 기대하고 있다. 이러한 HEA를 산업 응용 분야에 사용하기 위해서는 가벼우면서도 복잡한 형태의 HEA 부품에 대한 높은 내구성, 신뢰성, 그리고 파손 저항성이 요구된다. 새로운 합금은 더 안전하고 연료 효율적인 차량의 제조, 더 강한 제품의 생산, 그리고 더 오래 지속되는 기계의 개발을 가능하게 하여, 소비자와 산업계 모두에 혜택을 가져올 것으로 기대된다. 또한, 레이저를 사용하여 분말 합금을 고체 금속 형태로 융합하는 레이저 기반의 적층 가공 방식은 에너지 효율성이 매우 높다는 점에서, 새로운 유형의 HEA 생산에 있어 매력적인 방법으로 여겨진다. 이는 에너지 소비를 줄이면서도 고품질의 합금 부품을 생산할 수 있는 방법으로, 지속 가능한 제조 및 공정 효율성 측면에서 중요한 역할을 할 것으로 예상된다. 나노 라멜라 구조와 기계적 특성 레이저 기반 적층 가공 공정은 나노미터 두께의 나노 라멜라(얇은 판층) 구조를 생산할 수 있다. 이 공정은 높은 강도를 제공하면서도, 나노 라멜라의 뚜렷한 가장자리가 일정 수준의 미끄러짐(연성)을 허용하여 유연성을 보장한다. 이러한 나노 라멜라는 평균 약 150나노미터 두께의 면심 입방체(FCC) 결정 구조와 평균 약 65나노미터 두께의 체심 입방체(BCC) 결정 구조의 교차 층으로 구성된다. 개발된 새로운 고엔트로피 합금은 약 1.3기가파스칼(인장강도 단위)의 높은 항복 강도를 나타내며, 이는 가장 강한 티타늄 합금의 강도를 능가하는 수준이다. 또한, 이 HEA는 약 14%의 연신율을 제공하는데, 이는 동일한 항복 강도를 가진 다른 AM 금속 합금보다 높은 수치다. 연신율은 재료가 파손되지 않고 얼마나 많은 굽힘을 견딜 수 있는지를 나타내는 지표로, 재료의 유연성과 내구성을 측정하는 중요한 요소다. HEA 첨단 연구기술 및 시설 한편, 미국 테네시주에 위치한 오크리지 국립연구소(ORNL: Oak Ridge National Laboratory)의 연구원들은 에너지부(DOE) 산하 과학 사용자 시설인 파쇄 중성자원(Spallation Neutron Source)을 통해 변형 상태에서 HEA 샘플의 내부 기계적 부하 분배를 조사할 수 있었다. 이 시설의 중성자 데이터는 합금 내부의 상세한 구조적 정보를 제공함으로써 HEA의 기계적 특성에 대한 깊은 이해를 가능하게 했다. 또한, 연구팀은 ORNL 내의 다른 DOE 과학 사용자 시설인 나노입자 재료 과학(Nanophase Materials Sciences) 센터에 위치한 원자 프로브 장비를 활용하여, 교대로 층을 이루는 나노 라멜라 구조 및 미세 구조의 상세한 3D 이미지를 캡처했다. 이와 별개로, 미국 일리노이주에 위치한 시카고 아르곤 국립연구소(Argonne National Laboratory)의 첨단방사광가속기(Advanced Photon Source)는 어닐링 과정을 거친 다양한 HEA 샘플의 단계를 연구하는 데 사용되었다. 이 시설에서의 X선 회절 분석은 합금의 열처리 과정이 그 성질에 어떻게 영향을 미치는지를 평가하는 데 중요한 역할을 했다. 미국 내 첨단 연구기술 및 시설의 활용은 HEA의 개발과 응용에 있어 중요한 도약점을 제공하며, 합금의 구조적 및 기계적 특성에 대한 포괄적인 이해를 가능하게 한다. 이러한 첨단 연구는 HEA의 미래 적용 가능성을 확장하고, 재료 과학 분야에서의 혁신적 발전을 촉진할 것으로 기대된다. 연구소들의 고도화된 기술과 시설은 재료의 기본 구조부터 그 성능에 이르기까지 광범위한 분석을 허용함으로써, 합금의 특성을 극대화하고 다양한 산업 분야에 적용할 수 있는 새로운 기회를 열어준다.
-
- 산업
-
레이저 가공 HEA, 3D 프린팅으로 강도·연성 향상
-
-
글로벌 자동차업체, AI 등 디지털기능 탑재 자동차 개발 '열기'
- 글로벌 완성형자동차 제조업체들은 미국 테슬라와 중국 비야드(BYD) 등 인기 전기자동차(EV)에 필적할 인공지능(AI) 등 디지털기능을 탑재한 자동차개발에 열을 올리고 있다. 14일(현지시간) 로이터통신 등 외신들에 따르면 미국 라스베이거스에서 개최중인 세계최대 IT전시회 'CES'에서 자동차업계와 애널리스트들은 이구동성으로 이같이 지적했다. 테슬라가 스마트폰과 같이 무선으로 소프트웨어를 바꿀 수 있는 OTA(차량 제어기 소프트웨어를 무선으로 업데이트하는 기술) 방식을 탑재한 차량을 발표한 이후 10년이상이 걸렸다. 하지만 기존의 완성차 제조업체들은 소프트웨어로 기능과 특징이 결정되는 '소프트웨어 정의 차량(SDV)'의 개발에서 여전히 뒤떨어져 있다. 자동차 제조업체들은 최근까지 승용차∙픽업트럭의 마력과 추진력을 내세워왔지만 자동차업계에서 눈부신 기술혁신이 이루어 지고 있어 소프트웨어 기능의 향상이 소비자들의 마음을 사로잡고 있다. SDV로의 이행은 일방적으로 한방향으로 나아가지 않는다. 자동차에는 스마트폰보다도 높은 내구성과 안전성이 요구된다. 대화형AI '챗GPT' 등 새로운 AI시스템에는 오류가 따라다닌다. 또한 AI는 기존의 차량 제품 사이클과 비교해 훨씬 급속하게 변화한다. IT기업 시험용 베타판 제공 IT기업들은 제품의 정식출시전에 베타판으로 시험차원에서 소비자에게 기술을 제공하는 사례가 많지만 자동차업계에서는 현시점에서 이같은 방식은 채택하지 않고 있다. 이같은 상황에서 메르세데스-벤츠는 챗GPT를 자사의 차량에 시험적으로 탑재하는 '베타프로그램'을 개시했다. 운전전와 차량 인포테인먼트 시스템 간 자연스럼 대화를 어떤 형태로 개선할 수 있을지를 조사하고 있다. 메르세데스-벤츠의 소프트웨어 수석책임자 매거너스 오에스트베르그는 CES에서 "이전에는 베타 프로그램의 도입 등을 생각하지 않았지만 대규모언어모델(LLM)이 실제로 어떻게 도움이 될지 지켜볼 필요가 있다"고 지적했다. 그는 "기존 차량보다도 훨씬 빠른 속도로 소프트웨어를 개발해 차량에 탑재할 필요가 있다"고 덧붙였다. 오에스트베르그는 "우리는 IT인프라를 바꾸고 있으며 제조라인의 변경를 OTA로 시행하 수 있도록 제조라인을 실제로 바꾸고 있다. 딜러의 판매방식 등 모든 것을 바꾸고 있다"고 언급했다. 소프트웨어 기능 강화에는 거액의 투자가 필요하지만 반드시 순조롭게 진행되지는 않는다. 미국 GM은 지난해 12월 22일 출시한 '시보레 블레이저 EV'의 판매를 중단했다. 고객들로부터 소프트웨어의 오류에 관한 클레임이 있었전 점이 그 원인으로 꼽힌다. 지난 10일 시점에서도 소프트웨어의 수정은 이루어지지 않고 있다. GM은 소프트웨어의 변경준비가 이루어진다면 차량 소유자는 딜러에 차량을 가져가게 된다고 설명했다. 이에 대해 테슬라는 OTA기술을 채택하고 있으며 차량 소유자들이 수리를 위해 딜러에 차량을 가져갈 필요가 없다. "차량 소프트웨어 개발은 험난한 도전" 컨설팅회사 알렉스 파트너스의 글로벌 프랙티스 책임자 마크 웨이그필드는 기존 자동차 제조업체로서 테슬라에 필적하는 소프트웨어 아키텍처를 개발하는 것은 '험난하고 험난한 도전'이라고 지적했다. 독일 폭스바겐(VW)은 지난해 말 EV용 기술을 납품기간내에 개발할 수 없었던 자체 소프트웨어부문 카리아드(CARIAD) 재편을 발표했다. 개발을 서두르기 위해 IT업계에서 제휴처를 찾고 있다. VW 브랜드의 기술개발 책임자 카이 글루닉은 기존 자동차 제조업체와 소프트웨어회사에서는 일 처리방식이 다르다고 지적했다. 그는 "우리도 배우지 않으면 안된다"고 말했다. VW는 CES에서 챗GPT를 장착한 음성어시스턴트 기술을 탑재한 승용차를 연내에 투입한다고 발표했다. 제휴업체인 미국 소프트웨어회사 셀렌스의 이그발 알샤드 최고기술책임자(CTO)는 대형 자동차업체 10~15곳과 제휴 교섭 중이라고 말했다. EV 격전지는 중국 업계관계자와 애널리스트에 따르면 VW와 메르세데스 등 기존 완성차 제조업체의 격전지는 성장이 두드러진 중국 EV시장이다. 테슬라, BYD와 일부 중국 신흥EV 업체들은 게임, 화상회의 등 고정밀의 인포테인먼트 기능을 탑재한 차량디스플레이를 제공하고 있다. 중국의 복수 자동차 제조업체들은 이번 CES에서 인텔리젠트화가 이루어진 차량 두뇌가 될 고성능반도체를 미국의 엔비디아와 인텔로부터 조달하는 계약을 발표했다. 중국 승용차협회에 따르면 지난해 중국시장에서는 BYD 등 자국 브랜드가 시장점유율을 확대했다. 반면 해외업체의 점유율은 축소됐다. 혼다는 시장점유율 회복을 위해 2022년에 소니그룹과 EV합작회사 소니∙혼다 모빌리티를 설립했다. 이 회사의 미즈노 야스히데(水野泰秀) 최고경영자(CEO)는 혼다에서도 노하우가 없다면서 합작회사의 중요성을 강조했다. 과금 과제 새로운 소프트웨어 개발과 투입은 기존 자동차제조업체의 과제이지만 소비자들로부터 과금을 징수할 수 있을지는 또다른 문제다. 일부 자동차제조업체들은 반자율운전 등 기능에 정액요금을 부과하고 있지만 컨설팅회사 딜로이드의 조사에서는 소프트웨어 기능에 추가요금을 지불할 것이라고 응답한 소비자는 25%에 그쳤다. 현대차의 호세 무뇨스 최고집행책임자(COO)는 "CES에서 새로운 소프트웨어 기능에서 추가요금을 과금할 수 있는 것은 최대 3~5년이며 그 이후에는 이같은 기능은 진부해질 것"이라며 "고객들의 요구정도는 항상 매우 높다"고 말했다.
-
- IT/바이오
-
글로벌 자동차업체, AI 등 디지털기능 탑재 자동차 개발 '열기'
-
-
생수 속 나노플라스틱, 리터당 수천 개…체내 침범 우려
- 연구원들이 생수 속에서 이전 추정치보다 10~100배 더 많은 플라스틱 조각이 포함되어 있다는 사실을 발견했다고 CNN이 8일(현지시간) 보도했다. 미국 컬럼비아 대학의 연구원들은 생수에 있는 나노입자의 화학 구조를 보고, 계산하고, 분석할 수 있는 새로운 기술을 제시했다. 새로운 연구에 따르면, 표준 크기 생수 2개에 해당하는 1리터의 물에는 7가지 유형의 플라스틱에서 평균 24만 개의 플라스틱 입자가 포함되어 있으며, 이 중 90%는 나노플라스틱이고 나머지는 마이크로플라스틱인 것으로 확인됐다. 이 연구 결과는 미국 국립과학원 회보(Proceedings of the National Academy of Sciences) 저널에 이날 발표됐다. 나노 입자는 너무 작아서 현미경으로 볼 수 없다. 전문가들은 인간 머리카락 평균 너비의 1000분의 1인 나노플라스틱은 너무 작기 때문에 소화관이나 폐 조직을 통해 혈류로 이동하여 잠재적으로 유해한 합성 화학 물질을 몸 전체와 세포에 퍼트릴 수 있다고 지적했다. 미세 플라스틱은 0.2인치(5mm) 미만에서 2만5000분의 1인치(1마이크로미터)에 이르는 폴리머 조각이다. 그보다 더 작은 것은 10억분의 1미터 단위로 측정해야 하는 나노 플라스틱이다. 이 연구를 주도한 연구팀은 미국에서 판매되는 인기 생수 브랜드 3곳의 실제 플라스틱 조각 수가 리터당 300개가 아니라 11만 개에서 37만 개 사이라는 사실을 발견했다. 단, 저자들은 어떤 브랜드의 생수를 연구했는지는 언급하지 않았다. 공동 저자이자 환경 화학자인 컬럼비아 대학교 라몬트-도허티 지구 천문대의 부교수인 베이잔 얀(Beizhan Yan)은 "이 새로운 기술은 실제로 물속에서 수백만 개의 나노 입자를 볼 수 있었으며, 이는 무기 나노 입자, 유기 입자 및 우리가 연구한 7가지 주요 플라스틱 유형이 아닌 다른 플라스틱 입자일 수 있다"고 말했다. 이 연구는 나노 플라스틱이 인간 건강에 미치는 잠재적 위험을 탐구하는 새로운 방향을 제시했다. '건강한 아기, 밝은 미래'라는 비영리단체의 연합체에서 일하는 연구 책임자 제인 헐리한은 이 연구에 직접 참여하지는 않았지만, 나노 플라스틱의 인간 건강에 대한 잠재적 위험을 더 깊이 이해하기 위한 추가적인 연구가 필요하다고 강조했다. 이 단체는 아기들이 신경독성 화학물질에 노출되는 것을 줄이기 위해 노력하는 과학자들과 기부자들로 구성되어 있다. 헐리한은 "이 연구는 미세 플라스틱 입자에 대한 광범위한 인체 노출이 거의 연구되지 않은 위험을 초래할 수 있음을 시사한다"고 말했다. 그녀는 "특히 영유아가 이러한 위험에 가장 크게 노출될 수 있는데, 그 이유는 영유아의 발달이 더디기 때문"이라고 덧붙였다. 펜실베이니아주립대 베렌드 캠퍼스의 지속가능성 책임자인 셰리 '샘' 메이슨(Sherri 'Sam' Mason)은 이 연구에 참여하지 않았지만, "이 연구는 인상적이며, 투입된 노력이 매우 심오하다. 나는 이를 획기적이라고 부르고 싶다"라고 평가했다. 이 새로운 발견은 수돗물 유해 물질 노출을 줄이기 위해 유리나 스테인리스 스틸 용기에 담긴 수돗물을 마시라는 오랜 전문가의 조언을 강조한다고 메이슨은 말했다. 이러한 조언은 플라스틱으로 포장된 다른 음식과 음료에도 적용된다고 그녀는 덧붙였다. 메이슨은 9개국 11개 브랜드에서 판매되는 생수 샘플의 93%에서 마이크로플라스틱과 나노 플라스틱의 존재를 처음으로 발견한 2018년 연구의 공동 저자였다. 과거 연구에서 메이슨은 오염된 물 1리터에 인간의 머리카락보다 넓은 평균 10개의 플라스틱 입자와 300개의 작은 입자가 포함되어 있음을 발견했다. 그러나 5년 전인 2018년 기술로는 그 작은 입자를 분석하거나 더 많은 것이 있는지 알아낼 방법이 없었다. 메이슨은 "우리가 나노플라스틱의 존재를 몰랐던 것은 아니다. (당시) 우리는 그것들을 분석할 수 없었다"라고 설명했다. 나노 플라스틱, 인간 건강 위협 전문가들은 나노 플라스틱이 인류 건강에 가장 큰 위협을 주는 플라스틱 오염 유형 중 하나로 지목하고 있다. 이는 나노 플라스틱의 미세 입자가 주요 기관의 세포와 조직을 침입해 세포 활동을 방해하고, 비스페놀, 프탈레이트, 난연제, 과불소화 물질(PFAS), 중금속 등의 내분비 교란 화학물질을 축적할 수 있기 때문이다. 러트거스 대학교 어니스트 마리오 약학대학의 독성학 박사이자 약리학 부교수인 피오피 스태플튼(Phoebe Stapleton) 박사는 쥐를 대상으로 한 연구에서 임신한 쥐가 플라스틱 입자를 섭취하거나 흡입한 후 24시간 만에 그들의 태아의 뇌, 심장, 간, 신장 및 폐에서 플라스틱 화학물질을 발견했다고 보고했다. 스태플튼 박사는 "이 시점에서 인간 태반에서 마이크로플라스틱과 나노 플라스틱이 발견됐다"고 말했다. 그는 "인간의 폐 조직과 인간의 대변, 인간의 혈액에서 (미세 플라스틱이) 발견됐다"고 덧붙였다. 생수에서 나노입자를 식별하는 새로운 연구 방법은 라만 분광법의 개선된 형태에 기반을 두고 있다. 이 기술은 분자가 빛에 반응하여 진동하는 방식을 측정함으로써 세포의 화학적 구성을 분석한다. 이 기술의 공동 발명자이자 컬럼비아 대학교 화학과 교수인 웨이 민(Wei Min) 교수는 “이 변형된 라만 분광법, 자극 라만 산란 현미경(SRS)은 두 번째 레이저를 추가해 이전에는 감지하기 어려웠던 나노입자를 여러 자릿수로 증폭된 신호를 통해 탐지할 수 있다"고 말했다. 민 교수는 2008년 SRS를 공동 개발했다. 민 교수는 "이 연구는 자극 라만 산란 현미경을 나노플라스틱 세계에 적용한 최초의 연구"라고 말했다. SRS는 이미지를 획기적으로 향상시킴으로써 기존 기술에서 몇 시간이 걸리던 나노 입자의 이미지를 마이크로초 단위로 명확하게 식별하고 캡처할 수 있으며, 촬영 대상 조직에 손상을 주지 않고도 이미지를 캡처할 수 있다. 해당 연구에서 개발된 알고리즘은 출판 당시 폴리아미드, 폴리프로필렌, 폴리에틸렌, 폴리메틸메타크릴레이트, 폴리염화비닐, 폴리스티렌, 그리고 폴리에틸렌 테레프탈레이트를 포함한 일곱 가지 주요 플라스틱 유형을 식별할 수 있었다. 컬럼비아 대학교 화학 박사과정 학생이자 이 연구의 수석 저자인 나이신 치안(Naixin Qian)은 "다른 연구들을 통해 우리는 생수에 존재하는 대부분의 미세 플라스틱이 주로 PET(폴리에틸렌 테레프탈레이트) 병에서 누출된 것으로 추정했다"고 말했다. 다양한 유형의 플라스틱 존재 연구팀의 발견에 따르면, 플라스틱 물병 안에는 예상과 달리 다양한 유형의 플라스틱이 존재하며, 각 플라스틱 유형마다 입자 크기가 다르다. 연구팀은 "PET 플라스틱 입자는 크기가 컸지만, 다른 플라스틱 입자는 200나노미터에 불과해 훨씬 더 작았다"고 밝혔다. 연구에 따르면, PET 입자는 병 뚜껑을 반복적으로 여닫거나, 병이 파손되거나, 자동차 안에서 높은 온도에 노출될 때 부서질 수 있는 것으로 밝혀졌다. 컬럼비아 대학교 연구팀은 앞으로 생수에 떠다니는 나노 플라스틱의 출처를 더 깊이 연구할 계획이다. 이들은 나노 플라스틱이 제조 과정 중 오염된 원수에서 유래했을 가능성을 조사하고 있다. 한편, '건강한 아기, 밝은 미래' 재단의 헐리안은 과학이 이와 같은 문제를 탐구하는 동안 사람들이 플라스틱 노출을 줄이기 위해 취할 수 있는 조치들에 대해서도 밝혔다. 그녀는 "플라스틱 용기에 담긴 음식과 음료 섭취를 피하고, 천연 직물로 만든 옷을 입으며, 천연 소재의 소비자 제품을 구매하는 것이 좋다. 일상에서 플라스틱 사용을 줄이고 대안을 찾는 것이 중요하다"고 말했다.
-
- 생활경제
-
생수 속 나노플라스틱, 리터당 수천 개…체내 침범 우려
-
-
[CES 2024] 삼성디스플레이, OLED 게이밍 탑재 노트북 첫선...압도적 화질
- 삼성디스플레이는 자사 고화질 유기발광다이오드(OLED)를 탑재한 게이밍 노트북 '레이저 블레이드 16'이 세계 최대 가전·IT 전시회 'CES 2024'에서 처음으로 공개한다고 5일 밝혔다. 전 세계 기술 업계가 한자리에 모이는 CES 2024는 미국 라스베이거스에서 1월 9일부터 1월 12일까지 4일간 열린다. 연례 가전제품 박람회 CES 2024는 일상생활에 영향을 미칠 가장 큰 기술 트렌드를 선보이는 자리다. 삼성디스플레이는 레이저 블레이드 16 출시를 앞두고 16형 240헤르츠(㎐) 노트북용 OLED 양산을 본격 시작했다. 레이저 블레이드 16은 글로벌 브랜드 레이저의 올해 신제품으로, 240㎐ 고주사율에 0.2밀리세컨드(ms)의 응답속도와 QHD+(2560×1600) 해상도를 갖춘 프리미엄 게이밍 노트북이다. 이 제품은 최근 미국 비디오전자공학협회(VESA)로부터 노트북 제품 중 가장 높은 화질 규격 등급인 '클리어MR 11000' 인증을 획득했다. 이호중 삼성디스플레이 중소형디스플레이 사업부 상품기획팀장은 "삼성 OLED만의 차별화된 화질과 우수한 성능을 바탕으로 소비자들의 다양한 선택지를 제공하고 노트북 시장의 새로운 트렌드를 이끌어 갈 것"이라고 말했다. 트레비스 퓌르스트 레이저 노트북 및 액세서리 글로벌 사업부장은 "신제품은 0.2ms의 빠른 응답 속도와 뛰어난 색상 정확도를 자랑하는 디스플레이를 통해 게임 애호가들과 크리에이터들에게 전에 없던 차원의 그래픽 경험을 제공할 것"이라고 했다. 한편, CES 2024에서는 인공지능(AI)과 자율주행, 8K TV 등이 주목받고 있다. 야후 파이낸스는 4일(현지시간) CES 2024에서는 AI PC를 중심으로 다뤄질 것으로 보인다고 전했다. AI PC의 기본 개념은 노트북과 데스크톱 칩에 AI 처리 기능을 추가하여 사용자가 클라우드가 아닌 자신의 컴퓨터에서 AI 애플리케이션을 실행할 수 있도록 하는 것이다. 개인 정보나 기업 파일과 같은 민감한 데이터를 AI 프로그램을 통해 실행해야 하는 경우, 이를 클라우드로 전송하는 것보다 컴퓨터에서 실행하는 것이 더 안전하다는 생각에서 AI PC가 주목받고 있다는 것. AMD와 인텔, 퀄컴은 최근 몇 달 동안 각각 자체 AI PC 칩을 선보였다. 특히 인텔은 오는 12월 코어 울트라 AI PC 프로세서를 출시할 예정이다. 야후 파이낸스는 또 전 세계의 자동차 제조업체들이 라스베이거스 컨벤션 센터의 전시 홀을 가장 인기 있는 승용차와 트럭, SUV는 물론 하늘을 나는 자동차로 가득 채웠다고 전했다 특히 하늘을 나는 자동차의 경우, 우버(UBER)와 현대자동차가 협력해 CES 2020에서 플라잉 택시를 발표했다. 올해는 현대자동차그룹의 첨단 항공 모빌리티 회사인 수퍼널이 전기 수직이착륙(eVTOL) 차량을 공개할 예정이다. 이번 전시에서는 수퍼널의 eVTOL 차량과 버티포트 전시를 통해 승객이 플라잉 콘셉트 차량에 탑승하는 모습을 선보일 것으로 기대된다.
-
- 산업
-
[CES 2024] 삼성디스플레이, OLED 게이밍 탑재 노트북 첫선...압도적 화질
-
-
한화시스템, 드론 체계개발사업 수주⋯1433억원 규모
- 한화시스템은 21일 방위사업청과 1433억원 규모의 '함 탑재 정찰용 및 서북 도서용 무인항공기 체계개발사업' 계약을 체결했다고 22일 공시했다. 이 계약은 지난해 한화시스템 연결 매출액의 6.55%에 달한다. 계약기간 시작일은 2023년 12월 21일이고, 종료일은 2028년 12월 20일이다. 이 사업은 한국의 해군·해병대에서 운용 예정인 수직이착륙형 무인기(VTOL)를 연구·개발하는 내용이다. 한화시스템은 오스트리아의 무인기 업체 '쉬벨'의 무인기에 전자광학(EO)·적외선(IR) 센서 및 합성개구레이더(SAR)를 탑재해 해군·해병대에 공급할 예정이다. 한국 군은 납품받은 수직이착륙형 무인기로 전방위 감시 정찰 임무를 수행할 계획이다. 한화시스템이 공급하는 무인항공기는 다양한 센서를 탑재할 수 있고, 자동 이륙과 프로그램된 위치정보 시스템(GPS) 경로로 자동 항법 운항이 가능하다. 또한 수직이착륙형으로, 선박의 헬리콥터 데크에 추가 착륙 장비 없이 착륙할 수 있게 개발해 민간용 및 군용으로 모두 활용 가능할 것으로 기대된다. 아울러 한화시스템은 드론 공격으로부터 중요시설을 방어하는 저고도 대(對)드론 체계 사업 2건을 방위사업청으로부터 수주했다고 22일 밝혔다. 먼저 한화시스템은 전날인 21일 방위사업청과 약 300억원 규모의 '중요 지역 대드론 통합체계' 사업 계약을 체결했다. 공격 드론을 막기 위해 국내 처음으로 전력화 및 군 시범 운용을 하는 사업이다. 중요지역대드론통합체계는 한국군 최초로 전력화되는 '시설형' 드론 방호체계다. 공군 기지와 해군 항만 등 육·해·공군 주요 시설 드론 공격을 방어하기 위한 것으로, 영공을 침투하는 소형 무인기를 탐지·식별한 후 재밍(전파교란)을 통해 작동 불능 상태로 만든다. 한화시스템은 탐지 레이다, 불법드론 식별 및 추적용 전자광학(EO)·적외선(IR) 열상감시장비, 표적 무력화용 재머(Jammer), 통합 콘솔(운용장치) 등으로 구성돼 표적드론 무력화가 가능한 '대드론 통합체계'를 설치하고 운용한다. 해당 시스템은 시설 방호에 특화돼 향후 원자력 발전소, 공항, 데이터센터 등 국가 주요 기반 시설에도 배치될 것으로 한화시스템은 기대하고 있다. 마지막으로 신속시범획득사업인 '드론대응 다계층 복합방호체계'는 50억 달러 규모의 계약이다. 계약 기간은 이번 달부터 2024년 12월이다. 한화시스템의 '드론대응 다계층 복합방호체계'는 원거리 3km 이상 불법 드론을 레이다로 탐지하고, 전자광학(EO)·적외선(IR) 열상감시장비로 자동추적 후에 '3km-2km-1km' 거리별로 다계층 복합 대응으로 표적을 무력화한다. 소프트킬(재밍)과 하드킬(그물 포획 및 레이저) 방식을 합쳐 3km 거리에서는 재밍(전파교란), 3~2km 구간에서는 '그물형' 킬러드론으로 포획, 드론이 중요 및 접적(接敵)지역 1km 이내 진입 시에는 고출력 레이저 장치로 요격하는 체계다. 기동성 보장과 도심·중요 지역 방어를 위해 구성품을 차량에 탑재해 이동형으로 개발했다. 90도 고각(高角) 및 방위각 360도에서 전방위 탐지가 가능하다. 한화시스템 관계자는 "이번 사업을 통해 무인기 체계 및 유무인 복합체계 분야에서 업체에서 더 강화된 지위를 확보할 계획"이라고 말했다.
-
- 산업
-
한화시스템, 드론 체계개발사업 수주⋯1433억원 규모
-
-
[퓨처 Eyes(15)] 20m 미만 소형 입자 가속기, 의료·반도체 혁신 예고
- 미국 텍사스대학교(UT) 오스틴 캠퍼스 연구원들이 전자 에너지가 높고 공간도 적게 차지하는 소형 입자 가속기를 개발했다. '입자 가속기'는 우주를 구성하는 기본 입자들의 속성과 상호작용을 연구하는 데 필수적인 장치다. 현대 물리학의 중심에 서 있는 이 기술은 반도체 응용 분야, 의료 영상 및 치료, 재료, 에너지 및 의학 연구에 큰 잠재력을 가지고 있다는 평가다. 특히 기존 가속기는 수 킬로미터에 달하는 넓은 공간을 차지해 가격이 비싸고 소수의 국립연구소와 대학에서만 사용할 수 있었다. 미국 과학 기술 매체 사이테크데일리에 따르면, UT 연구팀이 개발한 소형 입자 가속기는 길이 20m 미만으로, 기존 가속기보다 훨씬 콤팩트하다. 또한, 100억 전자볼트(10 GeV)의 에너지를 가진 전자빔을 생성할 수 있어, 기존 가속기와 동일한 수준의 성능을 갖는다. 현재 미국 내에서 이와 같은 높은 전자 에너지 수준에 도달할 수 있는 가속기는 단 두 대에 불과하며, 둘 다 길이가 약 3km에 달한다. 이 연구의 공동 저자인 비요른 마누엘 헤겔리히(Bjorn "Manuel" Hegelich) UT 물리학 부교수는 "우리는 이제 이러한 에너지 수준에 매우 가까운 거리, 약 10cm 내에서 전자 빔에 도달할 수 있다"고 말했다. 이번 연구는 입자 가속기 기술의 발전에 중요한 진전을 의미하며, 향후 다양한 과학적, 의료적 응용에 사용될 수 있다. 헤겔리히 교수는 저널 '극한에서의 물질과 방사선(Matter and Radiation at Extremes)'에서 "우리의 가속기는 우주 장치의 방사선 내성 테스트, 새로운 반도체 칩의 3D 내부 구조 이미지화, 심지어 혁신적인 암 치료법과 고급 의료 영상 기술 개발에 활용될 수 있다"고 말했다. 또한, 이 가속기는 X선 자유 전자 레이저 구동에도 사용될 수 있다. 이 레이저는 원자나 분자 수준에서 일어나는 프로세스를 슬로우 모션으로 촬영하는 데 이용 가능하다. 가속기 기술의 혁신 '소형 입자 가속기' 입자 가속기는 원자와 같은 작은 입자들을 매우 높은 속도로 가속시켜, 이들을 서로 충돌시키거나 특정 표적에 충돌시킴으로써 그 속성을 탐구한다. 이러한 과정을 통해 과학자들은 입자들과 이를 구성하는 힘에 대해 깊이 있게 연구할 수 있다. 입자 가속기는 주로 하전 입자의 속도를 증가시키는 데 사용된다. 양성자, 원자핵, 전자와 같은 양전하나 음전하를 지닌 입자들이 이에 해당한다. 이 입자들은 때때로 빛의 속도에 근접한 속도로 가속된다. 입자가 표적 물질이나 다른 입자와 충돌할 때, 다양한 현상이 발생한다. 충돌로 인해 에너지가 방출되고, 핵 반응이 일어나며, 입자가 산란되고 새로운 입자가 생성된다. 예를 들어, 중성자와 같은 다른 입자들이 이러한 충돌에서 생겨날 수 있다. 이 과정을 통해 과학자들은 원자, 원자핵, 핵자를 결합하는 힘과 '하이그스 보손(Higgs boson)'과 같은 특별한 입자들의 성질을 연구할 수 있다. 하이그스 보손, 우주 기본 입자의 질량 부여하는 '신의 입자' '하이그스 보손'은 기본 입자 물리학의 중요한 개념 중 하나로, 입자들이 질량을 갖게 되는 메커니즘을 설명하는 데 핵심적인 역할을 한다. 이 입자는 1964년 물리학자 피터 하이그스와 다른 몇몇 이론 물리학자들에 의해 처음으로 제안됐다. 2012년 유럽입자물리연구소(CERN)의 대형 강입자 충돌기(LHC)에서 처음 발견됐다. 하이그스 보손은 매우 무거운 입자로, 질량은 약 125GeV이다. 이는 약 125억 전자볼트와 같다. 하이그스 보손은 또한 매우 불안정한 입자로, 평균 수명은 약 1.56x10¯²²초로 추정된다. 이는 하이그스 보손이 생성된 직후 거의 즉시 다른 입자들로 붕괴한다는 것을 의미한다. 하이그스 보손의 발견은 물리학 연구에 새로운 동력을 불어넣었다. 이로 인해 피터 하이그스와 프랑수아 앵글레르는 2013년 노벨 물리학상을 수상했다. 이 발견은 우주의 근본적인 성질에 대한 이해를 크게 향상시켰으며, 여전히 많은 연구가 진행 중이다. 입자 가속기 활용 분야 입자 가속기는 우주의 기원과 구조, 물질의 기본 구성 요소, 자연법칙 등을 연구하는 데 사용된다. 입자 가속기를 이용하여 새로운 입자를 발견하거나, 기존 입자의 성질을 연구할 수 있다. 또한 입자 가속기는 생물학, 의학, 재료과학, 나노기술 등 다양한 분야의 응용과학 연구에 활용된다. 입자 가속기를 이용하여 새로운 약물이나 치료법을 개발하거나, 새로운 재료나 소재를 개발할 수 있다. 예를 들어, 암 치료를 위한 정밀 방사선 요법이나 새로운 재료의 연구에 활용될 수 있다. 종양을 제거하거나 염증을 치료하는 방사선 치료를 수행할 수 있다. 입자 가속기를 사용하여 의료용 동위원소를 생산할 수도 있다. 의료용 동위원소는 암 진단, 치료, 방사선 치료 등 다양한 의학 분야에서 사용된다. 입자 가속기는 반도체 제조, 금속 재료 연구, 환경 오염 측정 등 산업 분야에도 다양한 용도로 활용되고 있다. 입자 가속기를 이용하여 반도체의 미세 회로를 제조할 수 있다. 또 식품이나 의약품을 살균하거나, 디스플레이 등을 제조할 수 있다. 아울러 새로운 물리학 이론을 탐구할 수 있다. 표준 모델 이외의 이론, 예를 들어 초대칭성, 여분의 차원, 양자 중력 이론 등을 실험적으로 탐구하는 것이 다음 세대 가속기의 중요한 목표 중 하나가 될 것이다. 또한 대규모 입자 가속기 프로젝트는 국제적 협력을 필요로 한다. 이러한 협력은 물리학뿐만 아니라 정치적, 경제적, 교육적 측면에서도 광범위한 영향을 미칠 것으로 보인다. 웨이크필드 레이저 가속기 웨이크필드 레이저 가속기는 1979년에 처음으로 개념이 제시된 이후 괄목할 만한 발전을 거듭해왔다. 이 기술은 강력한 레이저를 헬륨 가스에 충돌시켜 플라즈마 상태로 가열하고, 이 과정에서 고에너지 전자 빔이 가스의 전자를 밀어내며 파동을 생성한다. 지난 수십 년간 여러 연구 그룹이 이 기술을 발전시켜 더욱 강력한 버전을 개발했다. 헤겔리히 교수와 그의 연구팀은 나노기술을 이용해 주요 발전을 이루었다. 부가적인 레이저가 가스 셀 내의 금속판과 충돌하면, 금속 나노입자들이 흘러나와 파동에서 전자로 에너지 전달을 증가시키는 역할을 한다. 이 과정은 보트가 호수를 가로질러 나아가며 남기는 항적과 유사하며, 전자는 서퍼가 파도를 타는 것처럼 이 플라즈마 파동을 타고 이동한다. 이러한 혁신적인 접근 방식은 웨이크필드 레이저 가속기 기술의 효율성과 성능을 높이는 데 크게 기여하고 있다. 앞으로도 이 분야의 연구와 개발에 중요한 역할을 할 것으로 예상된다. 헤겔리히 교수는 웨이크필드 가속기의 원리를 비유를 통해 설명했다. 그는 "웨이크 서핑을 하려면 큰 파도에 들어가기 어렵기 때문에 서퍼들은 제트 스키에 끌려들어간다"고 비유했다. 이어서 "우리 가속기에서는 제트 스키와 유사한 역할을 하는 것이 적절한 시간과 위치에서 전자를 방출하는 나노입자이다. 이를 통해 파도 위에 더 많은 전자를 끌어들여 가속하는 것이 우리의 '비밀 소스'"라고 부연했다. 이 실험을 위해 연구팀은 세계에서 가장 강력한 펄스 레이저 중 하나인 '텍사스 페타와트 레이저(Texas Petawatt Laser)'를 사용했다. 이 레이저는 UT에 설치되어 있으며, 매시간 한 번씩 초강력 빛 펄스를 발사한다. 단일 페타와트 레이저 펄스의 전력은 미국 전력의 약 1000배에 달하지만, 지속 시간은 150펨토초에 불과하다. 이는 번개 방전의 10억분의 1도 안 되는 짧은 시간이다. 웨이크필드 레이저 가속기는 강력한 레이저를 헬륨 가스에 충돌시켜 플라즈마 상태로 가열하고, 이 과정에서 고에너지 전자 빔이 가스의 전자를 밀어내며 파동을 생성한다. 전자는 이 플라즈마 파동을 타고 이동하면서 에너지를 얻게 된다. 헤겔리히 교수와 그의 연구팀은 나노기술을 이용해 주요 발전을 이루었다. 부가적인 레이저가 가스 셀 내의 금속판과 충돌하면, 금속 나노입자들이 흘러나와 파동에서 전자로 에너지 전달을 증가시키는 역할을 한다. 소형 입자 가속기 연구의 의미와 전망 UT 연구팀의 이번 연구는 소형 입자 가속기 기술의 발전에 중요한 진전을 이루었다는 점에서 의미가 있다. 소형 입자 가속기는 기존 가속기의 단점인 비용과 공간 제약을 극복할 수 있어 다양한 분야에서 활용될 가능성이 높다. 연구팀은 향후 현재 개발중인 소형 입자 가속기를 테이블 위에 올려 놓고 초당 수천 번 반복적으로 발사할 수 있는 레이저로 시스템을 구동하여 기존 가속기보다 훨씬 더 콤팩트하고 훨씬 더 넓은 환경에서 사용할 수 있는 가속기를 만드는 것을 목표로 하고 있다. 한편 현재 세계 각국은 입자 가속기의 성능을 향상시키기 위한 연구에 박차를 가하고 있다. 유럽입자물리연구소(CERN)는 현재 운영 중인 대형 강입자 충돌기(LHC)의 성능을 개선하기 위한 작업을 진행하고 있다. 또한, 미국, 중국, 일본 등에서도 새로운 입자 가속기의 건설을 추진하고 있다. 이러한 노력을 통해 입자 가속기는 우주와 물질의 기본 법칙을 이해하고 새로운 기술을 개발하는 데 더욱 중요한 역할을 할 것으로 기대된다.
-
- 포커스온
-
[퓨처 Eyes(15)] 20m 미만 소형 입자 가속기, 의료·반도체 혁신 예고
-
-
전기차 K-배터리 3사, 글로벌 점유율 50% 돌파 임박
- 올해 1~10월까지 중국을 제외하고 판매된 글로벌 전기차(EV, PHEV, HEV)에 탑재된 배터리 총 사용량이 약 254.5GWh에 달하는 것으로 조사됐다. 이는 전년 동기 대비 무려 52.8% 성장한 것이다. 11일(현지시간) 에너지 전문 시장조사업체 SNE리서치에 따르면, LG에너지솔루션‧삼성SDI‧SK온 등 K-배터리 3사 모두 탑 5에 안착했다. 이 가운데 가장 큰 성장률을 보인 곳은 LG에너지솔루션이다. LG엔솔은 전년 동기 대비 47.0%(70.5GWh) 성장하며 1위를 유지했다. SK온은 14.2%(27.7GWh), 삼성SDI는 43.6%(25.0GWh) 성장률로 각각 4위와 5위를 기록했다. 중국의 CATL은 94.3%(70.3GWh)의 성장률로 고성장세를 지속하며 시장 점유율을 빠르게 확대하고 있는 상황이다. 국내 전기차 배터리 3사의 시장 점유율은 전년 동기 대비 5.4%포인트 하락한 48.4%를 기록했다. 그러나 배터리 사용량은 성장세를 나타냈다. SNE리서치는 "국내 3사의 성장세는 각 사의 배터리를 탑재한 모델들의 판매 호조가 주요인으로 작용했다"고 분석했다. LG엔솔‧SK온‧삼성SDI...점유율 50% 육박 삼성SDI의 배터리를 탑재하는 BMW i4/i7, 아우디 Q8 e-Tron이 판매량 증가세를 보였고, 그 외 상업용 전기차를 생산하는 리비안 R1T/R1S/EDV, 피아트500이 준수한 판매량을 기록하면서 성장세를 이어갔다. 특히, 프리미엄 전기차 배터리 시장을 공략한 삼성SDI는 고부가 배터리 P5(니켈 함량이 88% 이상)의 비중 확대로 안정적인 수요와 높은 수익성을 통해 최근 전기차 시장의 성장률 둔화 우려에 의한 업황에서 안정적인 실적을 유지할 것으로 보인다. SK온은 현대차의 아이오닉 5, 기아 EV6, 메르세데스 EQA/B, 포드 F-150 라이트닝의 견조한 판매량으로 인해 성장세를 기록했다. 최근 SK온은 시장에서 수요가 높은 각형, LFP(리튬‧인산‧철) 배터리 개발을 상당 수준 완료한 것으로 알려져 추후 북미 지역을 중심으로 시장 점유율을 확대할 것으로 전망된다. LG에너지솔루션은 테슬라 모델 3/Y, 폭스바겐 ID. 시리즈, 포드 머스탱 마하-E(Mach-E) 등 유럽과 북미에서 높은 인기를 보이는 차량들의 판매 호조가 이어져 국내 3사 중 가장 높은 성장률을 기록했다. 테슬라, 포드, GM 등의 완성차 OEM들이 LFP 배터리 탑재 비중을 확대하고 있고 전기차 수요 둔화 우려에 따라 불확실성이 높은 상황이지만, GM의 블레이저 전기자동차(EV)와 같은 얼티엄 플랫폼이 적용된 신모델의 출시가 잇따라 예정된 가운데 향후 합작법인인 얼티엄셀즈의 배터리 사용량 확대로 불확실성을 해소할 것으로 분석된다. 파나소닉, 테슬라 모델 Y가 견인 일본의 파나소닉은 올해 배터리 사용량 37.1GWh를 기록하며 전년 동기 대비 31.7% 성장했다. 파나소닉은 테슬라의 주 배터리 공급사 중 하나로 북미 시장의 테슬라에 탑재된 배터리 사용량이 대부분을 차지했다. 테슬라 모델 3은 부분변경 모델이 본격적인 판매를 앞두고 있어 잠시 판매량이 주춤했으나, 전년 동기 대비 판매량 증가를 보인 테슬라 모델 Y가 파나소닉의 성장세를 견인했다. CATL을 비롯한 몇몇 중국 업체들은 중국 내수 시장에서의 성장률보다 非중국 시장에서 높은 성장률을 보이며 글로벌 시장 점유율을 빠르게 확대하고 있다. CATL의 배터리는 테슬라 모델 3/Y(중국산 유럽, 북미, 아시아 수출 물량)를 비롯해 BMW, MG, 메르세데스, 볼보 등 메이저 완성차 OEM 차량에 탑재되고 있다. 최근 현대의 신형 코나와 기아 레이 전기차 모델에도 CATL의 배터리가 장착되어 국내 시장 또한 중국 업체의 영향력이 점차 확대되고 있는 모습이다. 최근 전세계 전기차 시장 성장 둔화 우려가 수면위로 떠오르면서 전기차 배터리 시장의 수요 하락에 대한 우려 또한 심화되고 있다. 시장 성장 둔화 요인으로 전세계 경기 불황과 고금리 현상 지속, 얼리어답터의 초기 구매 수요 완결, 주요 국가의 보조금 축소 및 폐지가 주요 원인으로 꼽힌다. 하지만 이와 같은 일시적인 성장 둔화 요인은 리튬과 같은 광물 가격 하락에 의해 배터리 가격 및 전기차 가격이 안정되며 순차적으로 해소될 전망이다.
-
- 산업
-
전기차 K-배터리 3사, 글로벌 점유율 50% 돌파 임박
-
-
NASA 프시케, 8주간 성공적 임무 수행
- 미국항공우주국(NASA)의 프시케(Psyche) 탐사선이 순항 중이다. 지난 2023년 10월 13일 지구를 떠난 후 8주 동안 과학 장비의 전원을 켜고 데이터를 지구로 전송하고 전기 추진기로 심우주 기록을 세우는 등 성공적인 작업을 차례로 수행했다. 프시케는 이미 지구에서 2,600만km 떨어져 있으며 2029년에 화성과 목성 사이에 있는 주 소행성대에 있는 소행성 프시케(Psyche)에 도착할 예정이라고 학술지 사이언스 어드밴스(Science Advances)가 보도했다. 이미지 장비, 정상 작동 확인 프시케의 이미지 장비는 물고기자리 별자리의 별장 내에서 총 68개의 이미지를 캡처했다. 이미지 팀은 데이터를 사용해 적절한 명령, 원격 측정 분석 및 이미지 보정을 확인했다. 애리조나 주립대학교의 프시케 이미지 장비 책임자인 짐 벨(Jim Bell) 교수는 "이 초기 이미지는 단지 시작을 알리는 것일 뿐"이라며 "이 정교한 장비를 설계하고 운영하는 팀에게 첫 번째 빛은 스릴이다"라고 밝혔다. 이어 "우리는 이와 같은 별 이미지가 포함된 카메라를 확인하기 시작해 2026년에 탐사선이 비행하는 동안 화성의 테스트 이미지를 촬영할 것"이라며 "마지막으로 2029년에 우리는 목표 소행성 프시케(Psyche)의 가장 흥미로운 이미지를 얻게 될 것이며, 이 모든 영상을 대중과 공유하기를 기대한다"고 말했다. 이미지는 여러 색상 필터를 통해 사진을 찍으며, 이 필터는 모두 초기 관찰에서 테스트됐다. 필터를 통해 팀은 인간의 눈에 보이는 빛과 보이지 않는 빛의 파장의 사진을 사용해 금속이 풍부한 소행성 프시케의 구성을 결정하는 데 도움을 줄 것으로 보인다. 자력계, 소행성 형성 과정 규명에 기여할 듯 프시케는 임무 초기인 10월 말에 자력계의 전원을 켰다. 자력계는 소행성이 어떻게 형성되었는지 결정하는 데 도움이 되는 중요한 데이터를 제공할 것으로 기대된다. 프시케는 태양 폭발을 감지하는 등 예상치 못한 선물도 안겼다. 팀은 탐사선이 소행성으로 이동하는 동안 우주 날씨를 계속 모니터링할 예정이다. 자력계 데이터를 통해 팀은 소행성의 자기장이 매우 작지만 정확하게 감지할 수 있음을 확인했다. 또한 탐사선이 자기적으로 ‘조용함’을 확인했다. 전기 추진기, 심우주 기록 세우다 프시케는 11월 8일 과학 장비를 사용한 모든 작업 중에 4개의 전기 추진기 중 2개를 발사해 깊은 우주에서 홀 효과 추진기를 최초로 사용하는 기록을 세웠다. 또한 일주일도 채 지나지 않은 11월 14일에는 심우주 광학 통신(DSOC)이라는 실험인 탐사선에 내장된 기술 시연을 자체적으로 하는 기록도 세웠다. DSOC는 달 너머 멀리서 광학 데이터를 주고받아 최초의 빛을 얻었다. 이 장비는 거의 1,600만km 떨어진 곳에서 테스트 데이터로 인코딩된 근적외선 레이저를 발사했는데, 이는 광통신의 가장 먼 시연이기도 했다. 중성자 감지센서, 소행성 표면 물질 구성 규명에 기여 프시케 팀은 또한 세 번째 과학 장비인 감마선 및 중성자 분광계의 감마선 감지 구성 요소를 성공적으로 가동했다. 다음으로, 장비의 중성자 감지 센서는 12월 11일 주에 켜질 것으로 예상된다. 이 기능은 팀이 소행성 표면 물질을 구성하는 화학 원소를 결정하는 데 도움이 될 전망이다. 프시케 팀은 "모든 과학 장비가 예상대로 작동하고 있다는 사실에 매우 기쁘다"라며 "이러한 성공은 프시케가 소행성 프시케에 대한 중요한 발견을 할 수 있는 잠재력을 보여준다"고 말했다.
-
- 산업
-
NASA 프시케, 8주간 성공적 임무 수행
-
-
중국 CATL, 전세계 배터리 시장 35% 점유⋯1년 만에 51.1% 급성장
- 전 세계 전기차 시장 성장 둔화 우려에도 불구하고 글로벌 배터리 사용량이 증가한 것으로 나타났다. 특히, 중국 CATL은 광저우 자동차, 테슬라 등의 판매 성장에 힘입어 전세계 점유율 35% 이상을 차지했다. 에너지 전문 시장조사업체 SNE리서치에 따르면, 올해 1~10월 세계 각국에 등록된 전기차(EV, PHEV, HEV)에 탑재된 총 배터리 사용량은 약 552.2GWh로 전년 동기 대비 44.0% 성장했다. 눈에 띄는 부분은 중국의 CATL의 성장률이다. CATL은 전년 동기 대비 51.1%(203.8GWh) 성장률로 전세계 배터리 공급사 중 유일하게 35.0% 이상의 시장 점유율을 차지하며 글로벌 1위 자리를 유지했다. 특히, 중국 내수 시장을 넘어 해외 진출에 본격적으로 뛰어든 CATL은 테슬라를 시작으로 완성차 OEM들의 LFP 배터리 채택 비중 확대에 힘입어 중국을 제외한 모든 대륙에서 전년 동기 대비 2배 가까이 성장했다. CATL의 배터리는 광저우자동차가 지난 10월 출시한 소형 SUV 에이온Y(Aion Y), 지리자동차 지크르 001(ZEEKR 001)과 같은 중국 내수 시장의 주력 승용 전기차 모델들 외에도 테슬라 모델3/Y(Model 3/Y), BMW iX, 메르세데스 EQS(Mercedes EQS) 등과 같이 전세계 주요 완성차 OEM의 차량에도 탑재되고 있어 꾸준히 높은 성장세를 나타낼 전망이라고 SNE리서치는 설명했다. 국내 3사 배터리 업체는 같은 기간 모두 성장세를 보였다. 반면 점유율은 23.4%로 전년 동기 대비 1.1%포인트 하락했다. LG에너지솔루션은 전년 동기 대비 47.2%(76.1GWh) 성장하며, 3위를 기록, SK온은 13.8%(27.9GWh), 삼성SDI는 42.1%(25.1GWh) 성장률과 함께 각각 5위와 7위를 기록했다. 국내 3사의 성장세를 각 사의 배터리를 탑재한 모델들의 판매 호조로 분석된다. 삼성SDI의 배터리를 탑재하는 BMW i4/i7, 아우디 Q8 e-Tron이 판매량 증가세를 나타냈고, 그 외 리비안 R1T/R1S/EDV, 피아트500(FIAT 500)이 준수한 판매량을 기록하면서 성장세를 이어갔다. 프리미엄 전기차 배터리 시장을 공략한 삼성SDI는 고부가 배터리 P5의 비중 확대로 안정적인 수요와 높은 수익성을 통해 최근 전기차 시장의 성장률 둔화 우려에 의한 업황에서 안정적인 실적을 유지할 것으로 보인다. SK온은 현대차의 아이오닉 5, 기아 EV6, Mercedes EQA/B, 포드 F-150 라이트닝의 견조한 판매량으로 인해 성장세를 기록했다. 최근 시장에서 수요가 높은 각형, 리튬‧인산‧철(LFP) 배터리 개발을 상당 수준 완료한 것으로 알려져 추후 북미 지역을 중심으로 시장 점유율을 확대할 것으로 전망된다. LG에너지솔루션은 테슬라 모델 3/Y, 폭스바겐 ID. 시리즈, 포드 머스탱 마하-E(Mustang Mach-E) 등 유럽과 북미에서 높은 인기를 보이는 차량들의 판매 호조가 이어져 국내 3사 중 가장 높은 성장률을 기록했다. 테슬라, 포드, GM 등의 완성차 OEM들이 LFP 배터리 탑재 비중을 확대하고 있고 전기차 수요 둔화 우려에 따라 불확실성이 높은 상황이지만, GM의 블레이저 전기자동차(EV)와 같은 얼티엄 플랫폼이 적용된 신모델의 출시가 잇따라 예정된 가운데 향후 합작법인인 얼티엄셀즈의 배터리 사용량 확대로 불확실성을 해소할 것으로 보인다. 일본 기업중 파나소닉은 유일하게 톱 10에 이름을 올렸다. 올해 배터리 사용량 37.3GWh를 기록하며 전년 동기 대비 30.8% 성장했다. 파나소닉은 테슬라의 주 배터리 공급사 중 하나로 북미 시장의 테슬라에 탑재된 배터리 사용량이 대부분을 차지했다. 비야디(BYD)는 배터리 자체 공급 및 차량 제조 등 수직 통합적 공급망(SCM) 구축을 통한 가격 경쟁력 우위로 중국 내수 시장에서 높은 인기를 통해 중국 시장에서 전년 동기 대비 66.5%(87.5GWh)의 높은 성장률을 보였다. SNE리서치는 "최근 전세계 전기차 시장 성장 둔화 우려에 따라 전기차 배터리 시장의 불확실성이 높아졌다"면서 "전세계 전기차 침투율이 15%를 넘어서면서 얼리어답터의 초기 구매 수요 완결로 전기차 시장은 캐즘(Chasm, 혁신적인 신제품이 개발되어 출시된 다음, 초기 시장과 주류 시장 사이에서 일시적으로 수요가 정체되거나 후퇴되어 단절이 일어나는 현상) 존에 진입했으며 팬데믹 시기에 공급부족으로 이연된 대기수요 또한 공급 정상화로 소진된 점은 시장 성장 둔화의 요인 중 하나로 분석된다"고 말했다.
-
- 산업
-
중국 CATL, 전세계 배터리 시장 35% 점유⋯1년 만에 51.1% 급성장
-
-
ETH 취리히, 뼈·인대·힘줄 로봇 손 3D 프린팅 성공
- 스위스의 한 공과대학에서 3D 프린팅을 통해 뼈와 인대 등을 갖춘 로봇 손을 제작했다. 연구원들이 처음으로 뼈, 인대, 힘줄이 있는 로봇 손을 인쇄하는 데 성공했으며 이를 이용하면 부드러운 재료와 단단한 재료를 결합하는 것이 훨씬 쉬워진다고 미국 IT매체 엔가젯(Engadget)이 최근 보도했다. 스위스 취리히 연방공과대학(ETH 취리히)의 연구원들은 잉크빗(Inkbit)이라는 미국 기반 스타트업과 함께 사람의 손과 유사한 로봇 손을 3D 프린팅했다. 그들은 처음으로 뼈, 인대, 힘줄을 갖춘 로봇 손을 프린트했는데, 이는 3D 프린팅 기술의 큰 도약을 의미한다는 것이 엔가젯의 설명이다. 연구 성과가 게재된 '네이처(Nature)' 저널에 따르면 로봇 손의 뼈와 힘줄 등 여러 부분이 동시에 인쇄됐으며 나중에 별도로 조립되지 않았다는 점에 주목해야 한다. 로봇 손의 각 부품은 다양한 부드러움과 강성을 지닌 폴리머로 제작되었으며, 이는 새로운 레이저 스캐닝 기술을 통해 가능했다. 이 기술은 '탄성을 지닌 특수 플라스틱'을 한 번에 만들 수 있으며, 이를 통해 보다 복잡하고 세밀한 구조를 구현할 수 있다. 이러한 기술적 진보는 보철 분야와 소프트 로봇 구조의 생산에 큰 가능성을 열어준다. 기존에는 빠르게 경화되는 플라스틱에 주로 사용되었던 3D 프린팅 기술을, 잉크빗 연구원들은 느린 경화 플라스틱에도 적용할 수 있는 방법을 개발했다. 이 하이브리드 프린팅 방법은 내구성과 탄성을 개선하는 등 여러 장점을 제공한다. 이 기술을 통해 자연을 보다 정확하게 모방하는 것이 가능해져, 로봇 공학 및 의료 분야에서의 적용 가능성이 크게 확대될 것으로 예상된다. ETH 취리히의 로봇공학 교수인 로버트 카츠슈만(Robert Katzschmann)은 최근 그들이 개발한 부드러운 소재로 만들어진 로봇 손의 장점에 대해 설명했다. 그는 "우리가 개발한 부드러운 소재로 만들어진 로봇은 인간과 작업할 때 부상 위험이 적고 깨지기 쉬운 물건을 다루는 데 더 적합하다"고 말했다. 이러한 3D 프린팅 기술의 발전은 여전히 레이어별로 인쇄되는 기존의 방식을 따르지만, 통합 스캐너를 사용하여 프린팅 중 표면의 이상 여부를 지속적으로 확인하고, 시스템에 다음 재료 유형으로 이동하라고 지시한다. 또한, 느린 경화 폴리머 사용을 위해 압출기와 스크레이퍼가 업데이트됐다. 이 기술은 다양한 산업에 적합한 독특한 물체를 만들기 위해 강성을 미세 조정하는 데 사용될 수 있다. 인간의 손과 같은 부속물을 만드는 것은 이 기술의 하나의 사용 사례에 불과하며, 소음과 진동을 흡수하는 제조 물체를 만드는 데도 이 기술이 활용될 수 있다. 이러한 발전은 로봇공학, 의료 기술, 제조업 등 다양한 분야에서 혁신적인 솔루션을 제공할 잠재력을 가지고 있다. MIT 산하 스타트업 잉크빗은 이 혁신적인 3D 프린팅 기술 개발에 기여했다. 이 회사는 이미 이를 활용해 수익을 창출할 방법을 모색하기 시작했다. 회사는 곧 새로 개발된 프린터를 제조업체에 판매할 계획이며, 또한 이 기술을 이용한 복잡한 3D 프린팅 제품들을 소규모 기업에게도 판매할 예정이다. 이는 잉크빗이 제조업계에 새로운 기술을 제공하고, 다양한 시장에 진출하려는 전략의 일환으로 보인다. 한편, 3D 프린트 제조업체인 3D시스템즈에 따르면, 3D 프린팅 기술을 사용해 실리콘을 제작하는 것은 기존 사출 성형에 비해 최대 90% 정도 더 빠르고, 엄청난 비용과 시간을 절약할 수 있다. 의료 분야에서 3D 프린팅의 도입은 진단, 치료, 외과적 개입 방식에 혁신을 가져오고 있다. 특히 맞춤형 임플란트와 보철 영역에서의 응용은 3D 프린팅 기술의 가장 유망한 사용 사례 중 하나로 평가된다. 이 기술을 통해 개별 환자에게 최적화된 맞춤형 관절 임플란트, 복잡하게 설계된 의족 등을 제작함으로써 환자의 삶의 질을 크게 향상시킬 수 있다. 또한, 의료 기기와 수술 도구를 주문 제작할 수 있어 의료 공급자는 리드 시간과 비용을 줄이고 환자의 요구에 신속하게 대응할 수 있다. 이러한 다양한 접근 방식으로 인해 의료용 3D 프린팅의 가능성은 점점 더 현실화되고 있다. 이는 의료 분야에서의 혁신과 질적 향상을 이끌고 있으며, 향후에도 더 많은 발전이 기대된다.
-
- 생활경제
-
ETH 취리히, 뼈·인대·힘줄 로봇 손 3D 프린팅 성공
-
-
[퓨처 Eyes(12)]액체 금속, 화학공학 공정 혁신 '녹색화' 기대
- 호주 시드니 대학교에서 저온에서 촉매 역할을 하는 액체 금속을 개발했다. 액체 금속은 말 그대로 액체 상태인 금속을 의미한다. 이러한 금속들은 특정 온도에서 액체 상태로 존재하며, 그 특성 때문에 로봇공학이나 인공 장기, 핵융합 등 여러 분야에서 다양한 용도로 활용된다. 과학 전문매체 사이키(phys.org)에 따르면 호주 시드니 대학교 화학·생명분자 공학부의 쿠로쉬 칼란타르-자데 교수와 시드니 대학교와 뉴사우스웨일스 대학교에서 활동하는 준마 탕 박사가 이끄는 연구팀은 에너지 대량 소비가 특징인 20세기 초반의 화학 공정을 대체할 새로운 기술인 액체 금속을 테스트했다고 발표했다. '네이처 나노테크놀로지'에 발표된 액체 금속에 대한 최신 연구는 화학 산업의 전환점을 제시하고 있다. 연구팀은 녹는점이 낮은 30도의 액체 갈륨에 녹는점이 높은 주석과 니켈을 용해해 액체 금속을 얻었다. 액체 금속은 높은 전도성, 낮은 점도, 그리고 가변적인 형태를 가지고 있다. 즉, 액체 금속은 고체 금속에 비해 이동성이 높고, 형태를 자유롭게 변형할 수 있다. 대표적인 액체 금속인 수은은 상온에서 액체 상태를 유지한다. 연구팀은 에너지를 대량 소비하는 전통적인 고체 촉매 대신 액체 금속을 사용하는 새로운 방법을 도입했다. 현재 화학 공정으로 금속을 생산하는 것은 전체 온실가스 배출의 약 10~15%를 차지하고 있다. 전 세계 에너지의 10% 이상을 화학 공정에서 사용하는 현재 상황에서 이번 액체 금속 기술 개발은 중요한 의미를 갖는다. 액체 금속을 사용하는 방법은 기존 고체 촉매 기반 공정에 비해 에너지 소비를 크게 줄일 수 있다. 이는 환경에 미치는 부정적인 영향을 감소시키는 동시에 산업 효율성을 향상시킬 수 있다. 이 연구는 화학 산업의 지속 가능한 미래를 위한 중요한 단계로 여겨지며, 화학 공정의 혁신과 환경 보호라는 두 가지 주요 과제를 동시에 해결할 수 있는 가능성을 제시했다. 액체 금속의 특성 액체 금속은 독특한 물리적 성질과 화학적 안정성 덕분에 전자기기와 고체 배터리의 전극 소재, 냉각 시스템, 의료기기, 로봇공학 등 다양한 분야에서 적용될 수 있는 잠재력을 가지고 있다. 액체 금속은 뛰어난 전기 전도성을 가지고 있어, 유연한 전자기기, 인쇄 회로, 연결기기, 센서, 안테나 설계 등에 사용된다. 또한, 액체 금속의 낮은 점도와 높은 표면 장력은 미세 전자기기의 제조에 이상적이다. 아울러 액체 금속은 높은 열 전도성과 낮은 점도를 가지고 있어, 고성능 컴퓨터, 레이저 시스템, 핵 융합 반응기 등에서 발생하는 열을 효과적으로 관리하고 분산시키는 데 사용된다. 액체 금속은 핵 융합 반응기에서 냉각재로 사용되며, 핵 연료 재처리와 폐기물 관리에도 적용될 수 있다. 더 나아가 액체 금속의 생체 적합성과 유연성으로 인해, 의료 장치, 인공 장기, 생체 센서, 약물 전달 시스템 등의 개발에 활용된다. 액체 금속은 유연한 로봇, 착용 가능한 로봇 기술, 소프트 로봇공학에서 구조 및 센서 재료로서의 가능성을 가지고 있다. 액체 금속의 특성은 에너지 저장 시스템, 특히 고온 배터리와 연료 전지에서의 응용에 유리하다. 이러한 다양한 응용 분야는 액체 금속의 유연성과 기능성을 강조하며 미래 기술 발전에서 중요한 역할을 할 것으로 기대된다. 화학 공정 혁신으로 '녹색화' 기대 연구자들은 액체 금속이 기존 화학 산업의 '녹색화'를 앞당겨 화학 공정 혁신을 가져올 것으로 전망했다. 액체 금속 공정은 에너지 집약적인 고체 공정과 달리, 녹는점이 낮은 주석과 니켈을 용해하여 액체 금속의 표면으로 이동시키고 입력 분자인 카놀라유와 반응시킨다. 이 과정을 통해 작은 유기 사슬을 형성하며, 이 중에는 많은 산업에서 중요한 고에너지 연료인 프로필렌도 포함된다. 칼란타르-자데 교수는 "우리의 방법은 화학 산업이 에너지 소비를 줄이고 화학 반응을 녹색화하는 데 전례 없는 잠재력을제공한다"며 "2050년까지 화학 부문의 탄소 배출이 20% 이상을 차지할 것으로 예상되는 가운데, 패러다임 전환이 필수적이다"라고 말했다. 사진=시드니 대학교 연구팀은 녹는점이 높은 니켈과 주석을, 녹는점이 30도인 액체 갈륨 기반의 액체 금속에 용해시켜 액체 금속이라는 새로운 공정을 개발했다. 탕 박사는 "액체 갈륨에 니켈을 용해함으로써, 우리는 매우 낮은 온도에서 '슈퍼' 촉매로 작용하는 액체 니켈을 활용할 수 있게 되었다"고 설명했다. 저온에서 '슈퍼' 촉매 역할 시드니 대학교 화학 및 생명분자 공학부의 아리푸르 라힘 박사와 준마 탕 박사 팀은 액체 금속을 만든 공식을 낮은 온도 공정을 사용하여 다른 금속을 혼합함으로써 다양한 화학 반응에도 적용할 수 있다고 밝혔다. 탕 박사는 "낮은 온도에서 촉매 작용이 이루어지므로 이론적으로 주방 가스레인지에서도 가능하지만, 집에서는 시도하지 않는 것이 좋다"고 권했다. 한편 액체 금속은 다양한 분야에서 활용이 가능하다. 우선 냉각제다. 액체 금속은 열을 잘 전달하기 때문에, 반도체 제조 공정이나 레이저 제조 공정에서 냉각제로 활용된다. 또 액체 금속은 열을 잘 전달하기 때문에, 전자 제품이나 자동차의 냉각 시스템에서 열전도체로 활용된다. 전기를 잘 전달하기 때문에, 전기 회로나 센서의 전기 전도체로도 사용될 수 있다. 아직 연구 초기 단계에 있지만, 이러한 다양한 용도로 인해 액체 금속은 높은 잠재력을 지닌 신소재로 평가 받고 있다.
-
- 포커스온
-
[퓨처 Eyes(12)]액체 금속, 화학공학 공정 혁신 '녹색화' 기대
-
-
고에너지 레이저로 3D 프린팅 금속 미세 조정 기술 개발
- 고에너지 레이저로 3D 프린팅 금속을 미세조정하는 기술이 개발됐다. 금속 3D 프린터는 기본적으로 재료를 층층이 쌓아 올리는 일반적인 3D 프린터의 원리를 따른다. 이 과정에서 금속 분말(파우더)을 프린터 바닥에 얇게 펴 바르고, 제품의 형상에 맞게 해당 금속 분말 부위에 고출력, 고정밀 레이저를 적용한다. 레이저의 고열에 의해 금속 파우더가 미세 용융되면서 입자들이 결합한다. 이러한 과정에서 레이저로 금속을 미세 조정하는 기술이 최근 개발되어 주목 받고 있다. 미국 과학 전문 매체 뉴아틀라스(newatlas)는 영국 케임브리지 대학교가 주도하는 연구팀이 고에너지 레이저를 사용해 금속의 복잡한 형태를 손상시키지 않으면서 3D 프린팅 금속의 특성을 미세 조정하는 새로운 기술을 개발했다고 보도했다. 적층 인쇄나 3D 프린팅은 엔지니어링과 제조 분야에서 점점 더 중요한 도구로 자리 잡고 있지만, 여전히 해결해야 할 중요한 단점들이 있다. 이를 극복하기 위한 새로운 접근 방식이 필요하다. 3D 프린팅 금속은 일반적으로 금속 합금의 미세한 분말을 얇은 층으로 놓는 기계를 사용한다. 이 과정에서 디지털 모델에 따라 레이저 또는 전자빔으로 각 층을 녹이거나 소결(분말 입자들이 가열 등의 활성화 과정을 거쳐 하나의 덩어리로 되는 과정)하고, 새로운 층을 추가한다. 프린팅이 완료된 후에는 여분의 파우더를 제거하고 최종 제품을 완성한다. 이 방식을 통해 복잡한 형태를 빠르게 제작할 수 있지만, 금속 제품 제작에는 형태 외에도 고려해야 할 요소가 많다. 금속의 물리적, 화학적, 기계적 특성 간의 복잡한 상호작용이 중요한데, 이를 적절히 제어하지 못하면 최종 제품의 품질이 떨어질 수 있다. 예를 들어, 3D 프린팅으로 제작한 칼은 전통적인 방식으로는 어려운 복잡한 곡선과 정교한 디자인을 구현할 수 있지만, 금속 자체의 특성을 고려하지 않으면 칼날이 쉽게 부러지거나 너무 부드러워질 수 있다. 이는 3D 프린팅의 복잡한 형태 제작에서 해결해야 할 주요 과제다. 금속 작업자들은 수천 년의 경험과 최근 과학의 발전을 바탕으로 금속의 특성을 효과적으로 제어할 수 있는 검증된 기술을 개발해왔다. 금속 가공의 과정에는 금속을 가열하고 두드려 그 결정 구조를 변화시키는 작업이 포함된다. 가열, 냉각, 단조(고체인 금속재료를 해머 등으로 두들기거나 압력을 가하는 기계적인 방법으로 일정한 모양으로 만드는 조작) 과정을 통해 조절함으로써, 금속 조각은 메스에서 I빔(I-Beams)에 이르기까지 다양한 용도에 적합한 구조로 미세 조정될 수 있다. 그러나 이러한 방식은 단순한 모양의 금속 물체에는 적용될 수 있지만, 복잡한 3D 프린팅된 형태에는 적용하기 어렵다. 용광로에 넣거나 망치로 두드리는 방법은 3D 프린팅의 목적에 부합하지 않기 때문이다. 이 문제를 해결하기 위해 싱가포르, 스위스, 핀란드, 호주의 연구원들로 구성된 케임브리지 대학 팀은 현장에서 금속의 특성을 변경하기 위해 레이저를 사용하는 방법을 적용하기로 했다. 이 아이디어의 핵심은 레이저를 사용해 스테인리스 스틸로 만들어진 완성된 물체의 특정 부분을 선택적으로 녹여 결정 구조를 변경하는 것이다. 이 방식을 통해 연구팀은 3D 인쇄된 금속의 취성(매우 적은 변경에도 파괴되는 경우, 이를 '깨지기 쉽다'고 하고 그 정도를 '취성'이라고 함) 문제를 해결하고 금속을 강화하는 데 성공했다. 레이저를 사용한 이러한 미세한 재가열 과정은 전통 금속 가공에서 망치로 쇠를 단련하는 것과 유사하다. 연구팀은 금속을 연마하는 전통적인 기술에 착안하여 3D 프린팅에서 유사한 결과를 얻기로 했다. 예를 들어, 고품질의 칼날을 만드는 전통적인 방법 중 하나는 강철과 철을 사용해 여러 번 용접하고 두드리는 것이다. 이 과정에서 두 금속이 정밀하게 층을 이루며 칼날이 형성된다. 이러한 방법을 통해 칼 대장장이는 칼날 전체의 특성뿐만 아니라 특정 부분의 특성도 제어할 수 있으며, 결과적으로 칼날의 중앙은 유연하고, 가장자리는 날카롭게 유지된다. 케임브리지 대학 연구팀은 레이저로 처리한 부위와 처리하지 않은 부위를 번갈아 가며 대장장이가 구사한 것과 흡사한 기술을 개발했다. 이 기법을 통해 그들은 제품의 최종 속성을 효과적으로 제어할 수 있었다. 케임브리지 공학부의 마테오 세이타(Matteo Seita) 박사는 "이 방법이 금속 3D 프린팅 비용을 줄이고, 결과적으로 금속 제조 산업의 지속 가능성을 향상시킬 수 있다고 생각한다"며 "가까운 미래에 용광로의 저온 처리 과정을 우회하여, 3D 프린팅 부품을 엔지니어링 분야에 사용하기 전에 필요한 단계를 더욱 줄일 수 있기를 바란다"고 말했다. 한편, 최근 미국 캘리포니아 공과대학교(칼텍, Caltech) 연구팀은 독감 바이러스만큼 작은 금속재료로 3D 프린팅에 성공했다. 칼텍의 제조 방법에 따르면 150나노미터(독감 바이러스와 비슷한 크기)의 작은 금속재료를 비슷한 크기의 기존 재료보다 3~5배 더 견고하게 만들 수 있다. 또한 한국의 한국재료연구원은 용접기법을 사용하는 3D 프린팅 과정에서 용융금속의 부피를 제어하는 원천기술을 개발했다. 이를 통해 3차원 공간에서 금속을 자유롭고 연속적으로 프린팅할 수 있는 금속 3D 프린팅 펜 기술을 개발했다. 금속 3D 프린팅 펜 기술의 장점은 3차원 공간에서 용접토치가 움직이는 방향대로 금속을 연속적으로 적층 제조할 수 있다는 것이다. 기존 레이저 기반 금속 3D 프린팅과 비교할 때, 장비 구축 비용이 낮고 상용 용접재료를 사용해 빠르게 적층제조 할 수 있다. 또한 제조시간이 단축되고, 층간 경계가 없으며, 치밀한 미세조직을 형성해 우수한 기계적 성질을 갖는 제품을 만들 수 있다.
-
- 산업
-
고에너지 레이저로 3D 프린팅 금속 미세 조정 기술 개발
-
-
美 캘텍, 바이러스만큼 작고 강력한 3D 프린팅 금속 개발
- 독감 바이러스보다 작고 내결함성이 크게 향상된 새로운 3D 프린팅 금속이 개발됐다. 현재의 3D 프린터는 완성된 모형의 품질이 기존 제품보다 떨어진다는 단점이 있었다. 과학기술 전문매체 톰스하드웨어(tom’s HARDWARE)는 최근 미국 캘리포니아 공과대학교(캘텍, Caltech) 연구자들이 독감 바이러스만큼 작은 금속재료로 3D 프린팅에 성공한 사례를 소개했다. 캘텍의 제조 방법에 따르면 150나노미터(독감 바이러스와 비슷한 크기)의 작은 금속재료를 비슷한 크기의 기존 재료보다 3~5배 더 견고하게 만들 수 있는 것으로 밝혀졌다. 이 방법으로 금속을 3D 프린팅하는 것이 좋은 이유는 무엇일까. 작은 규모의 재료 제조는 원자 수준에서 복잡한 미세 구조를 가지며, 이는 큰 금속 물체에서 심각한 결함을 일으킬 수 있다. 그러나 나노 규모에서는 상황이 달라진다. 완벽하고 결함이 없는 나노 기둥은 자체적인 접촉으로 인해 무너질 수 있지만, 결함이 많은 나노 기둥은 오히려 결함에 대한 내성이 크게 향상된다. 이번 연구 논문의 주 저자인 웬싱 창(Wenxin Zhang)에 따르면, 나노 구조물 내부의 기공은 전체 구조를 약화시키기보다는 결함을 거의 즉시 중단시킬 수 있다. 이는 무엇을 의미할까. 나노 규모에서 물리학의 법칙이 매우 독특해지며, 이 분야의 기술 발전에 따라 우리는 이러한 비정상적이고 모순적인 현상을 더 자주 목격하게 될 것이다. 더 중요한 것은, 이러한 발견이 나노 크기의 센서, 열 교환기 등과 같이 매우 유용한 다양한 제품을 제조하는 데 사용될 수 있다는 점이다. 비록 기술적으로는 3D 프린팅의 일종이지만, 캘텍 연구소에서 사용되는 나노 스케일 재료의 특수 제작 과정은 소비자용 최고의 3D 프린터에서 구현하기는 거의 불가능할 것이다. 이 과정은 매우 복잡하며, 감광성 혼합물을 만드는 것부터 시작해, 이 혼합물을 레이저로 경화시키고, 니켈 이온이 함유된 용액을 주입하며, 물질을 굽고, 부품에서 화학적으로 산소 원자를 제거하는 단계를 포함한다. 3D 프린팅은 평면의 문자나 그림을 인쇄하는 것이 아니라, 입체적인 형태를 만들어내는 과정이다. 이 기술은 3차원 공간에 실제 사물을 생성하여 의료, 생활용품, 자동차 부품 등 다양한 물건을 제작할 수 있다. 3D 프린터에는 잉크 대신 플라스틱, 나일론, 금속과 같이 입체 도형을 만드는 데 사용되는 재료가 들어 있다. 이러한 재료를 활용하는 기술의 발전으로 이제는 고무, 종이, 콘크리트, 심지어 음식까지 다양한 재료를 이용한 3D 인쇄가 연구되고 있다. 한편, 한국의 정형외과용 임플란트 기업 오스테오닉이 자체 기술로 개발한 3D 프린팅 척추 임플란트 제품인 ‘지니아 3D 프린티드 케이지(ZINNIA 3D Printed Cage)’를 최근 출시했다. 이 제품은 인체 친화적인 티타늄 파우더로 3D 프린팅되어 척추 퇴행성 질환, 디스크 손상 또는 탈출 등의 치료에 사용되는 추간체 유합 보형재다. '지니아 3D 프린티드 케이지'는 인체 뼈의 해면골 구조를 모방한 다공성 설계로, 기존의 추간 유합 보형재와 달리 뼈 형성을 조기에 촉진하는 ‘생체 모방 다공성 스캐폴드’가 특징이다.
-
- 생활경제
-
美 캘텍, 바이러스만큼 작고 강력한 3D 프린팅 금속 개발
-
-
美 육군, 고출력 마이크로파로 드론 떼 제압 성공
- 최근 전쟁 판도를 바꾼 중요한 무기 중 하나로 '드론'이 꼽히고 있다. 우크라이나와 러시아 전쟁, 이스라엘과 하마스의 전쟁에서도 드론이 얼마나 중요한 역할을 하고 있는지 알 수 있다. 이제는 거꾸로 드론의 공격을 방어할 수 있는 방어체계 구축에 전 세계의 시선이 옮겨지고 있다. 최근 미군은 드론 떼의 공격에 대응할 수 있는 새로운 방어체계를 구축하고 정부의 수용 테스트를 완료한 것으로 알려졌다. 미국의 군사 전문 매체 C4ISRNET은 에피루스(Epirus)가 개발한 고출력 마이크로파 기술을 이용한 드론 방어용 프로토타입이 정부의 승인 테스트를 통과했다고 보도했다. 보도에 따르면, 이 프로토타입 시스템은 미국 육군에 인도되었으며, 드론뿐만 아니라 로켓, 대포, 박격포, 순항 미사일 등 다양한 위협으로부터 보호하는 간접화재 방어능력(IFPC)을 갖추고 있다. 이 IFPC(Indirect Fire Protection Capability) 시스템은 물리적 요격 기능과 레이저, 고출력 마이크로파 기술을 결합한 것이다. 미군은 현재 미국의 항공우주 기업 다이네틱스(Dynetics)로부터 IFPC 발사대의 첫 12개 프로토타입을 받고 있으며, 이 시스템은 2024년에 운영 테스트를 시작할 예정이다. 에피루스 측은 IFPC-HPM(고출력 마이크로파)이 2022년 12월 미군의 신속 능력 및 핵심 기술 사무국과 체결한 계약에 따라 개발된 무인 항공기 시스템-군집 능력을 갖춘 것이라고 밝혔다. 벤처 캐피털의 지원을 받는 에피루스는 미군이 저가의 드론 위협을 고가의 미사일로 대응하는 문제를 해결하기 위해 비용 효율적인 레오니다스(Leonidas) 시스템을 개발했다. 이 시스템은 과열 없이 즉각적으로 반응하며, 한 번 배치되면 재장전이 필요 없다. 레오니다스의 운영자들은 HPM(고출력 마이크로파) 펄스를 정밀하게 조절하여, 단일 무인 항공 시스템(UAS)이나 드론 무리를 효과적으로 타격할 수 있다. 에피루스는 최근 네바다에서 이 레오니다스 기반 IFPC-HPM 시스템에 대한 정부의 승인 테스트를 성공적으로 마쳤다고 밝혔다. 이 시스템은 다양한 상황에서의 스트레스 테스트를 거쳐, 드론 무리(떼)에 대응할 수 있는 능력과 신뢰성을 입증했다. 회사 측에 따르면, 이 시스템은 미군의 지속적인 평가 및 테스트를 거쳐, 작전 사용을 위한 전략, 기술 및 절차 개발에 기여할 것이다. RCCTO(신속 능력 및 핵심 기술 사무국)와의 계약의 일환으로, 추가적인 3대의 프로토타입이 미군에 인도될 예정이며, 이 시스템은 추가적인 개발 테스트를 진행한다. 에피루스는 2018년 창립 이후 2년 만에 8000만 달러(한화 약 1056억원)의 자본을 조달하며 빠르게 성장했다. 노스롭 그루먼(Northrop Grumman), 제너럴 다이내믹스(General Dynamics), 엘3해리스 테크놀로지스(L3Harris Technologies) 등 대형 계약사들도 이 회사의 기술에 투자했다. 한편, 한국전력기술은 국가 중요 시설물의 안전성 강화를 위해 원자력 발전소에 대한 드론 공격 방어 체계를 구축하기로 하고, 테라디펜스와 협약을 체결했다. 이 회사는 능동형 위상 배열 레이더 기술을 기반으로 10km 이상의 범위에서 무인기나 자살 드론을 탐지, 추적, 무력화하는 안티 드론 방호 체계 기술을 보유하고 있다.
-
- 산업
-
美 육군, 고출력 마이크로파로 드론 떼 제압 성공
-
-
日 치바대학, 2차원 컬러 이미지에서 3차원 홀로그램 생성
- 컴퓨터가 사람처럼 생각하고 배울 수 있도록 하는 기술 딥러닝. 이제 딥러닝을 통해 2차원 컬러 이미지를 3차원 홀로그램으로 생성하는 새로운 기술이 탄생해 학계의 주목을 받고 있다. 과학기술 전문매체 '사이테크데일리(SciTechDaily)'는 일본 치바대학 연구팀이 딥러닝을 사용해 2차원 컬러 이미지를 3차원 홀로그램으로 변환하는 혁신적인 방법을 소개했다. 이 연구는 공학 저널 '광학 및 레이저(Optics and Lasers in Engineering)'에 게재됐다. 사이테크데일리에 따르면, 홀로그램을 생성하기 위한 딥러닝 방법이 최근 다양하게 시도되고 있다. 기존에는 물체의 색상과 깊이 정보를 모두 캡처하는 RGB-D 카메라를 사용해 캡처한 3D 데이터에서 홀로그램을 만들 수 있었다. 치바대학 대학원 공학연구과의 시모바바 토모요시 교수가 이끄는 연구팀은 딥러닝 기술을 활용하여 이전보다 간편하게 홀로그램을 생성하는 새로운 방법론을 개발했다. 일반적인 카메라로 촬영한 2차원 컬러 이미지를 기반으로, 딥러닝 알고리즘을 통해 3차원 홀로그램 이미지를 만들어내는 것이 이번 연구의 핵심이다. 시모바바 교수는 "홀로그램 디스플레이 구현에 있어 3D 데이터 취득, 홀로그램 연산 비용, 홀로그램 디스플레이 특성에 적합한 홀로그램 영상 변환 등 여러 난관에 직면하고 있다"고 밝혔다. 그러나 연구팀은 딥러닝 기술이 최근 몇 년 동안 급속도로 진화하고 있으며 이러한 문제점들을 극복할 수 있는 높은 가능성을 가지고 있다고 강조했다. 그 믿음을 바탕으로 본 연구가 진행된 것이다. 이번 연구에서 제시된 방법론은 2개의 딥뉴럴네트워트(DNN)을 사용해 일반적인 3D 컬러 이미지를 3D 장면 또는 물체를 홀로그램으로 전환할 수 있는 데이터로 변환했다. 첫 번째 DNN은 일반 카메라를 사용해 캡처한 컬러 이미지를 기반으로, 관련 깊이 맵을 예측해 이미지의 3D 구조 정보를 도출한다. 원본 RGB 이미지와 첫 번째 DNN에서 생성된 깊이 맵은 이어서 두 번째 DNN으로 전달되어, 홀로그램의 생성 과정을 거친다. 두 번째 DNN은 홀로그램 이미지를 다른 디바이스에서 표시하기에 적합한 형태로 최적화한다. 연구팀은 이러한 방법론이 최첨단 그래픽 처리 장치를 사용하는 기존 방법에 비해 데이터 처리와 홀로그램 생성 시간이 더욱 단축됐다고 밝혔다. 시모바바 교수는 "우리의 방법론은 최종 홀로그램 이미지가 자연스럽게 3D로 재현될 수 있는 뛰어난 장점을 가지고 있다"며, "또한, 깊이 정보의 사용을 배제함으로써 저렴한 비용으로 홀로그램 구현이 가능하며, 특별한 3D 이미징 장치나 RGB-D 카메라의 필요성도 줄어든다"고 강조했다. 이러한 기술은 향후 고화질 3D 디스플레이를 위한 헤드업 디스플레이나 헤드 마운트 디스플레이 등에서 활용될 전망이다. 더 나아, 차량용 홀로그램 헤드업 디스플레이에서도 활용 가능하다. 이를 통해 운전자나 승객에게 도로, 표지판, 사람(보행자) 등에 대한 3D 정보를 제공하는 등 차량 내 디스플레이 기술에도 새로운 변화를 가져올 것으로 기대된다.
-
- IT/바이오
-
日 치바대학, 2차원 컬러 이미지에서 3차원 홀로그램 생성
-
-
중국, 1200km 장거리 양자 순간이동 실험 성공
- 중국 과학원이 약 1200km 떨어진 지역 간의 양자 순간이동 실험에 성공해, 보안 체계에 새로운 패러다임을 가져올 전망이다. 미국의 과학기술 전문 매체 '사이테크데일리(SciTechDaily)'는 중국 과학원이 양자 통신 위성 '묵자(墨子·Micius)'를 활용하여 1200km 이상되는 거리에서 양자 정보를 순간이동 시키는 데 성공했다고 최근 보도했다. 중국은 독자 개발한 세계 첫 양자위성 '묵자'호를 지난해 8월16일 오전 1시 40분 간쑤(甘肅)성 주취안(酒泉) 위성 발사 센터에서 창정(長征) 2-D 로켓에 탑재해 발사했다. 이 연구의 교신 저자인 치앙 슈(Qiang Zhou) 교수는 "고속 양자 순간이동을 실험실 밖에서 실현하기 위해서는 많은 어려움이 있다"며 "이번 실험 결과는 미래 양자 인터넷 발전을 위한 중요한 이정표가 될 것"이라고 말했다. 양자 순간이동 시스템에서의 주요 실험적 과제는 벨 상태 측정(BSM)을 실행하는 것이다. 양자 순간이동이 성공적으로 이루어지고 BSM의 효율성이 향상되려면, 광섬유를 통해 장거리로 전송된 후, 찰리가 앨리스와 밥의 광자를 구별하지 못하게 해야 한다. 과학자들은 해킹이나 도청이 불가능한 양자 암호통신인 정보를 한 곳에서 다른 곳으로 빛보다 빨리 옮기는 '원격전송'을 찰리와 앨리스, 밥으로 설명했다. 앨리스의 정보를 밥에게 주면 밥과 친한 찰리가 앨리스처럼 변한다. 결국 앨리스가 찰리를 거쳐 전송된다는 것. 엄격히 말하면 원격전송은 '양자 정보'만 전송하는 것이다. 연구팀은 광자의 경로 길이 차이와 편광의 신속한 안정화를 위한 효과적인 피드백 시스템을 성공적으로 개발했다. 또한 연구팀은 얽힌 광자 쌍을 생성하기 위해 섬유 피그테일 주기적 극화 리튬 니오베이트 도파관의 단일 조각을 사용했다. 이를 바탕으로, 순간이동 시스템에 사용될 500MHz의 반복률을 가진 고품질의 양자 얽힘 광원이 개발됐다. 양자 순간이동은 광자의 양자 얽힘 상태를 활용하여 양자정보를 한 위치에서 사라지게 하고 동시에 다른 위치에서 나타나게 하는 전송 방법이다. 이러한 양자광학 기반의 고속 양자 순간이동을 위해서는 많은 이벤트를 수집할 수 있는 강력한 광자 센서가 필요하다. 리싱 유(Lixing You) 교수가 이끄는 팀은, 포톤 기술회사(Photon Technology Co., LTD)와 협력하여 고성능 초전도 나노와이어 단일 광자 검출기를 실험에 활용했다. 효율이 뛰어나고 노이즈가 거의 없는 이 검출기의 장점을 활용하여 고효율 BSM과 양자 상태 분석을 구현한 것이다. 연구팀은 양자 상태 단층 촬영과 미끼 상태 방법을 함께 사용하여 순간이동 충실도를 계산했는데, 이는 고전적 한계(66.7%)를 훨씬 초과하여 고속 대도시 양자 순간이동이 달성됐음을 확인했다. 이번 'UESTC 제1위의 대도시 양자인터넷' 프로젝트는 앞으로 통합 양자 광원, 양자 중계기, 양자 정보 노드 등을 결합하여 '고속, 고충실도, 다중 사용자, 장거리'를 지원하는 양자 인터넷 인프라를 개발할 계획이다. 연구팀은 이렇게 개발된 인프라가 양자 인터넷의 실질적인 활용을 더욱 가속화하는 데 기여할 것이라고 예상하고 있다. 양자통신은 정보 보안의 새로운 패러다임을 제시하는 차세대 통신 방법으로 주목받고 있다. 전파를 사용하는 대신, 레이저를 통해 암호화된 광자를 전송한다. 광자, 즉 빛의 최소 단위는 조작되면 속성이 변경되어 중간에서 정보의 도청이나 간섭이 발생하면 암호 키가 손상되어 원본 내용을 복원할 수 없게 된다. 이러한 특성으로 인해 양자통신은 정보 보안이 중요한 금융, 군사 통신 등의 핵심 기술로 주목받고 있다. 지상에서의 양자통신은 광섬유를 통해 이루어진다. 우주에서는 광섬유 설치가 어렵기 때문에 과학자들은 양자 순간이동 기술에 주목하고 있다. 중국의 연구팀은 묵자호 위성을 이용하여 양자 순간이동의 최장 거리 기록을 갱신했다. 묵자호는 중국의 칭하이, 우루무치, 운남 성에 위치한 지상국들과 통신했다. 이번 실험에서는 약 1203km 떨어진 칭하이와 운남성 간의 양자통신에 성공했다.
-
- 산업
-
중국, 1200km 장거리 양자 순간이동 실험 성공
-
-
이탈리아 해군, 드론으로 지중해 희토류 채굴 나선다
- 이탈리아 해군이 지중해에서 리튬 등 희토류 채굴에 나선다. 유럽 방위 전문매체 디펜스 뉴스는 지난 10월 26일(현지시간) 이탈리아 군 고위관계자를 인용, 이탈리아 해군이 곧 지중해의 해저 희토류 채굴을 검토중이라고 보도했다. 마테오 페레고 디 크렘나고(Matteo Perego di Cremnago) 이탈리아 국방부 차관은 디펜스 뉴스와의 인터뷰에서 "지중해 해저에 희토류가 있다는 것을 알고 있다"며 "바다 밑으로 들어가서 채굴할 수 있다"고 말했다. 희토류 광물과 리튬은 배터리, 휴대폰, 레이저, 위성이나 마이크로칩을 만드는 데 핵심 원료로 서구에서 수요가 매우 높다. 현재 중국이 희토류 매장량이 세계에서 가장 풍부한 것으로 알려졌다. 유럽에서는 육지에서 채굴할 수 있는 희토류를 찾는 작업이 진행 중이지만, 조사에 따르면 바다 밑에도 희토류가 풍부한 지층이 존재한다. 크렘나고 국방부 차관은 해저 희토류 채굴을 보호하고 해저 인터넷 케이블 방어할 수 있을 것으로 예측했다. 그는 이탈리아 해군은 이러한 전략적 노력에 보안을 제공할 수 있는 방법을 계획하기 위해 이미 업계와 논의하고 있다고 덧붙였다. 차관은 "해군은 잠수부, 잠수함, 기뢰 제거기 등을 제공할 수 있으며 무인 기술이 중요할 것"이라고 말했다. 그는 "해저에서 활동 후 수면으로 올라와 태양 에너지로 자율 재충전할 수 있는 드론은 인프라와 해저 채굴을 모니터링할 수 있을 것"이라고 설명했다. 전기자동차 배터리에 필수적이며 전 세계가 가스 연료 차량에서 탈피하는 데 핵심적인 역할을 하는 리튬은 주로 호주와 중국, 남미에서 채굴된다. 유럽은 2050년까지 35배 더 많은 리튬이 필요할 것으로 예측하고 있다. 유럽위원회의 우르줄라 폰 데어 라이엔 위원장은 백색 분말인 리튬이 "곧 석유와 가스보다 훨씬 더 중요해질 것"이라고 말했다. 지난해 발트해에서 발생한 노르드 스트림 가스관 공격 이후 전략적 해저 인프라를 보호해야 할 필요성이 더욱 절실해졌다. 공격 이후 이탈리아 해군은 이탈리아 최대 민간 케이블 공급업체와의 계약의 일환으로 잠수함을 사용해 지중해 해저 인터넷 케이블을 감시하고 방해 행위를 저지하기로 약속했다. 올해 이탈리아는 해저에서 전 세계를 가로지르는 에너지 파이프라인과 인터넷 케이블에 대한 해저 보안을 강화하기 위한 EU의 영구 구조 협력(PESCO) 계획의 새로운 프로젝트를 주도하고 있다. 이탈리아 해군 관계자는 가까운 미래에 파이프라인과 케이블을 순찰하는 해저 해군 드론이 해저에 있는 충전소에 들러 배터리를 충전하고 데이터를 전송하면 몇 달 동안 잠수 상태를 유지할 수 있게 될 것이라고 말했다. 페레고 디 크렘나고 차관은 해저 인프라를 보호하는 해군의 미래 역할은 내년에 이탈리아 라 스페치아(La Spezia)에 문을 열 예정인 새로운 해저 기술 센터에서 기업, 대학, 연구센터, 해군을 한데 모아 연구할 것이라고 말했다. 한편, 환경 단체들은 해저 채굴이 해저의 자연 서식지를 훼손할 것이라고 주장하며 희토류 채굴 중단을 촉구했다. 한국, '탐해3호'로 해저 희토류 탐사 한국도 희토류 등 자원을 탐사하기 위해 한국지질자원연구원에서 '탐해(探海) 3호'를 운용하고 있다. 1868억원에 이르는 대규모 연구개발(R&D) 예산이 투입된 탐해3호는 2023년 7월6일 진수식을 가졌다. 탐해3호는 내년 4월부터 석유가스 등 해저 자원 탐사, 이산화탄소 해저 저장소 선정, 해저지층구조 변화 탐지 등 다양한 임무를 수행할 예정이다. 산업통상자원비가 건조비를 지원했고 지질자원연구원에서 운용하게 된다. 그동안은 탐해 2호가 1997년 취항해 26년여간 물리탐사연구를 수행했다. 지질연이 완성한 '태평양 해저 희토류 지도'에 따르면 태평양 해저 0~5m 기준으로 현재 희토류 매장이 확인된 지역은 159곳에 이른다. 희토류가 비교적 고르게 분포된 남위 30도, 서경 140도 부근 남태평양 1개 지역에서만 약 4860t가량 매장돼 있는 것으로 추정된다. 네오디뮴 등 핵심 5개 희토류의 경제적 가치만 2400억원 가량에 이른다. 연구진은 희토류 매장 지역의 특성을 인공지능(AI)으로 분석해 서태평양 등 매장 가능성이 높은 지역을 추가로 예측하고 있다.
-
- 산업
-
이탈리아 해군, 드론으로 지중해 희토류 채굴 나선다
-
-
NASA, 금속성분 풍부한 '프시케' 소행성 탐사
- 미국 항공우주국(NASA)은 화성과 목성 사이의 궤도에 있는 프시케(Psyche)라는 금속성분이 풍부한 소행성 탐사를 시작했다. 미국 매체 더 힐에 따르면 프시케는 철과 니켈 등의 금속으로 풍부하며, 길이가 280km에 달하는 거대한 소행성이다. NASA는 이 소행성이 충돌로 인해 표면의 암석이 제거된 채 남아있는 행성 핵으로 보고 있으며, 이를 통해 지구를 포함한 행성들의 핵이 어떻게 형성되었는지에 대한 단서를 찾을 수 있을 것으로 기대하고 있다. NASA의 제트 추진 연구소(JPL)는 지난 10월 13일 프시케 탐사선을 우주로 쏘아 올렸다. 이 탐사선은 약 6년 동안 40억km를 여행해 2029년 8월에 동일한 이름의 목적지인 프시케 소행성에 도착할 예정이다. 그 전에 탐사선은 2026년 5월 화성 근처를 지나며 화성의 중력을 이용해 속도를 증가시키고 방향을 조절한다. 행성에 도착한 후에는 약 26개월 동안 고도 65~700km 상공에서 프시케를 공전하며 지형과 구성 성분, 자기, 중력 등 다양한 정보를 수집할 계획이다. 이번에 탐사를 진행하는 '프시케' 탐사선은 소행성 이름을 따서 붙여졌다. 다중 스펙트럼 이미저, 감마선과 중성자 분광계, 자력계와 X-밴드 중력 과학 조사를 포함한 여러 도구를 탑재하고 있다. 또한 전파가 아닌 레이저를 사용하여 훨씬 더 빠른 속도로 데이터를 지구로 다시 보내는 심우주 광통신 장치를 테스트한다. 프시케 탐사 임무는 태양계의 탄생과 진화에 대한 많은 정보를 밝혀내어 과학에 도움이 될 것으로 기대한다. 아울러 우주의 천연 자원 채굴에 대한 정보도 수집한다. 일부 전문가들은 프시케 소행성의 광물 가치를 약 10조 달러(약 1경3430조원)로 추정하고 있다. '지구 물리학 연구 저널(Journal of Geophysical Research)'의 한 논문은 대략 11.65조 달러로 추정하기도 했다. 정확한 가치는 아직 확인되지 않았지만 미래에 이 소행성의 풍부한 광물을 채굴하려는 많은 시도가 예상된다. 핵 융합 추진 기술 발전 기대 프시케 혹은 다른 소행성에서의 채굴을 시작하기 위해서는 향후 5~6년 동안 새로운 기술 개발이 필요하다. 지구와 프시케 사이의 거리가 매우 멀기 때문에, 현재의 기술로는 소행성에서 광물을 채굴하고 지구로 귀환시키는 데 엄청난 비용이 들 것으로 예상되기 때문이다. 핵 융합 추진 기술이 개발된다면, 지구와 프시케 사이의 이동 시간이 크게 단축될 것으로 보인다. 이 기술을 활용하면 로봇을 이용해 소행성에서 자원을 채굴하고 정제한 후, 채굴된 자원을 우주 산업 인프라로 운송하는 광산 선박의 활용이 가능해질 것이다. 프시케와 같은 태양계의 천체들은 경제적인 이윤을 창출할 수 있으며, 이는 많은 이점을 가지고 있다. 소행성 채굴은 지구에서의 채굴과 달리 환경에 미치는 부정적인 영향이 없다. 저명한 천체 물리학자 닐 드 그래스 타이슨(Neil deGrasse Tyson)은 소행성과 달의 채굴에 대해 긍정적인 견해를 제시했다. 그는 이러한 채굴 활동이 천연 자원에 대한 충돌과 갈등을 줄일 수 있을 것이라고 말했다. 한국, 다누리 탐사 계획 우리나라도 우주 광물 채굴 분야에 뛰어들기 위한 준비를 하고 있다. 한국항공우주연구원은 2029년부터 2031년까지 '다누리'라는 이름의 소행성 탐사선을 개발 중이다. '다누리'는 지구로부터 약 1.5억km 떨어진 '162173 APL' 소행성을 목표로 하고 있다. 이 소행성은 지름이 약 500m이며, 철, 니켈, 황, 규산염 등의 광물이 풍부하다. '다누리'는 2029년 8월에 발사되어 2031년 12월에 APL 소행성에 도착할 예정이며, 그곳의 지형, 구성 성분, 자기장 등을 조사할 계획이다. '프시케'와 '다누리'의 탐사는 우주 광물 채굴의 실현 가능성을 입증하는 중요한 단계가 될 것이다. 우주 광물 채굴이 현실화되면 지구의 자원 문제를 해결하고, 새로운 경제적 기회를 열어줄 것으로 예상된다.
-
- 산업
-
NASA, 금속성분 풍부한 '프시케' 소행성 탐사
-
-
드론 잡는 장갑 로봇 나왔다
- 드론은 우크라이나와 러시아의 전쟁에서 볼 수 있듯이 이제 전쟁터에서도 없어서는 안 될 새로운 무기로 변모했다. 전쟁 판도를 바꿔 놓은 게임 체인저(어떤 일에서 결과나 흐름의 판도를 뒤바꿔 놓을 만한 중요한 역할을 한 인물이나 사건, 제품)로써 큰 활약을 했지만, 이젠 그 역할이 줄 것으로 보인다. 바로 드론을 잡을 새로운 무기가 개발됐기 때문이다. 프랑스 매체 푸투라(FUTURA)는 미국 제너럴 다이내믹스 랜드 시스템즈(General Dynamics Land Systems)에서 드론을 파괴하도록 설계된 장갑차가 개발됐다고 전했다. TRX SHORAD(단거리 대공방어)로 명명된 드론 대응 로봇은 10톤 중량의 자동화 시스템 장갑으로 둘러싼 로봇으로, 쿼드콥터 드론을 파괴하기 위해 설계됐다. 이러한 드론들은 우크라이나에서 대량으로 사용되며 포격 명중률을 향상시키거나, 지상의 목표물을 공격하는 데 사용된다. SHORAD는 '단거리 대공 방어'를 의미하는 군사 약어로, 적의 위협에서 병사와 보급 차량 또는 장갑차를 보호하고 적의 시야에서 숨기는 역할을 한다는 것을 뜻한다. TRX SHORAD 로봇의 포탑에 위치한 두 개의 포드는 드론을 격추하기 위해 로켓을 발사할 수 있다. 기관총을 사용할 수 있으며, 로켓을 무력화할 수 있다. TRX 플랫폼은 또한 물류 또는 병사들을 위한 무기 운송과 같은 다른 용도로 사용될 수 있다. 미국뿐만 아니라, 세계 각국에서도 드론을 잡을 신무기 개발이 활발하다. 지난 2022년 유럽의 대표적 방산 업체인 넥스터(Nexter)와 탈레스(Thales)는 파리에서 열린 '유로나발(Euronaval) 2022 방산 행사'에서 40mm 대공포인 레피드파이어(RAPIDFire)의 최신 버전을 공개했다. 자동으로 추적해 파괴하는 시스템으로 카메라 시스템이 드론을 확인하고 탄을 발사해 4km 이내의 드론을 무력화할 수 있다. 한국 국방과학연구소는 지난 2023년 4월 레이저 대공 무기의 시험평가를 진행했다. 당시 레이저를 30회 발사해 3km 밖에 있는 드론 30대를 모두 격추 시킨 것으로 알려졌다. 이에 국방부는 '전투용 적합 판정'을 내렸다. 곧 본격적인 양산과 실전 배치가 가능할 것으로 알려졌다. 영국 육군은 소총을 드론 잡는 스마트 무기로 바꾸는 스마트 사격 통제 시스템 스매쉬를 도입할 계획이다. 소총이 드론에 명중할 수 있는 상태에서만 격발이 가능한 사격 통제 시스템이 장착돼 불필요한 탄알의 낭비를 막을 수 있다. 이밖에도 전자파를 이용한 재머(Jammer, GPS 수신을 방해해 위치와 시간 정보를 먹통으로 만드는 장치), 드론 잡는 드론 등 각종 무기 체계가 활발히 개발되고 있다.
-
- 산업
-
드론 잡는 장갑 로봇 나왔다
-
-
극한의 고온에서만 녹는 초이온성 얼음
- 매우 뜨거운 온도에서만 녹는 '초이온성 얼음'이 발견됐다. 과학 전문 매체 '사이언스 얼럿'은 지난 15일(현지 시간) 초이온성 얼음이라고 알려진, 극한의 고온에서만 녹는 특별한 얼음이 발견됐다고 보도했다. 초이온성 얼음은 5년 전 과학자들에 의해 처음으로 실험실에서 재현되어 세상에 소개됐다. 이듬해인 4년 전에는 그 존재와 결정 구조가 확인됐다. 이후 미국 여러 대학과 캘리포니아의 스탠포드 선형 가속기 센터(SLAC) 연구소의 과학자들은 지난해 이 초이온성 얼음의 새로운 단계를 발견했다. 과학자들은 이번 발견은 천왕성과 해왕성이 보유하고 있는 특이한 다극자 자기장의 형성 원인에 대한 이해를 높여줄 것으로 기대하고 있다. 지구의 주변 환경에서 물은 일반적으로 하나의 산소 원자에 두 개의 수소 원자가 연결된 단순한 분자 구조를 가지고 있다고 여겨진다. 그러나 초이온성 얼음은 천왕성과 해왕성뿐만 아니라 유사한 다른 외계 행성의 내부에서도 발견될 수 있으며, 우주에서 가장 일반적으로 발견되는 물의 형태 중 하나로 추정된다. 이들 행성은 지구 대기보다 200만 배 더 높은 엄청난 압력과 내부 온도가 태양 표면만큼이나 뜨겁다. 이런 극한의 환경 속에서 물은 우리가 흔히 알고 있는 방식과는 다른 특이한 형태로 존재하게 된다. 1988년 물리학자들이 예측한 초이온성 얼음의 구조는 산소 원자들이 단단한 입방 격자 구조에 갇혀 있으며 이온화된 수소 원자들은 전자가 금속을 통과하듯 격자 속을 자유롭게 움직이는 구조로 이루어져 있었다. 이 구조는 2019년 과학자들이 확인했다. 초온성 얼음은 이러한 구조 덕분에 전기 전도율이 비교적 높은 전도성을 가지며, 녹는점도 상당히 높아져 극한의 고온에서도 얼음이 견고하게 유지된다. 스탠포드 대학의 물리학자 아리아나 글리슨과 그녀의 연구팀은 초이온성 얼음을 연구하기 위해 두 층의 다이아몬드 사이에 끼인 얇은 물 조각에 매우 강력한 레이저를 발사했다. 이렇게 생성된 연속적인 충격파는 압력을 200GPa(2백만 기압)까지, 온도를 약 5000K(8500°F, 4704℃)까지 상승시켰다. 이는 2019년 실험의 조건에 비해 온도는 높지만 압력은 낮게 유지됐다. 글리슨의 팀은 2022년 1월에 발간한 논문에서 "최근에 발견된 물이 풍부한 해왕성과 유사한 외계 행성들 때문에, 행성 내부의 압력-온도 조건에서 물의 상태에 대해 더욱 심도 있게 이해할 필요가 있다"고 밝혔다. 당시 연구에서 X-선 회절은 압력과 온도 조건이 몇 분의 1초 동안만 유지되었음에도 불구하고 뜨겁고 밀도가 높은 얼음의 결정 구조를 밝혀냈다. 그 결과, 회절 패턴을 통해 확인된 얼음의 결정 구조는 2019년에 관찰된 초이온성 얼음과는 다른 새로운 형태였다. 이 새롭게 발견된 초이온성 얼음인 '아이스 XIX'는 중심이 입방체 구조를 가지고 있으며, 2019년에 발견된 '아이스 XVIII'보다 전도도가 향상됐다. 전도도의 중요성은 하전 입자의 움직임이 자기장을 생성하기 때문이다. 이 원리는 다이너모 이론의 기초로, 지구의 맨틀이나 다른 천체의 내부에서 전도성 유체가 어떻게 자기장을 생성하는지를 설명한다. '다이너모 이론(dynamo theory)'은 물리학 용어로 1920년 조지프 라모어가 태양 자기장을 설명하기 위해 처음 제창한 가설을 기초로 지구 자기장을 설명한 이론이다. 만약 해왕성과 같은 얼음 거인 행성의 내부가 소용돌이치는 액체보다는 부드러운 고체로 더 많이 구성되어 있다면, 생성되는 자기장의 특성이 변할 것이다. 글리슨과 그녀의 팀은, 만약 행성의 중심부에 전도도가 서로 다른 두 종류의 초이온 층이 존재한다면, 외부 액체 층에서 생성된 자기장이 각 층과 복잡하게 상호작용하면서 더 복잡한 현상을 초래할 것이라고 제안했다. 글리슨의 연구팀은 아이스 XIX와 같은 향상된 전도도를 가진 초이온성 얼음 층이, 해왕성과 천왕성에서 관측된 불안정한 다극자 자기장을 생성하는데 기여했을 것이라고 분석했다.
-
- 산업
-
극한의 고온에서만 녹는 초이온성 얼음