검색
-
-
남극대륙 빙하 녹으면 지구는 어떻게 변할까?
- 지구상에서 가장 큰 두 개의 빙상인 남극 대륙과 그린란드의 빙상 크기는 약 6백만 제곱마일에 달한다. 그런데 이들 빙하가 다 사라진다면 지구는 과연 어떤 모습일까? 참고로 600만 제곱마일은 한국 면적의 약 155배, 미국 면적의 약 1.63배에 해당한다. 미국 경제매체 비즈니스 인사이더(Business Insider)는 지구상의 모든 육지의 빙하가 모두 녹을 경우, 해안선이 어떻게 변할지 상세히 묘사했다. 이 매체는 지구의 육지 얼음이 모두 녹아 바다로 들어가면 해수면이 약 65.8m(216피트) 상승할 것이라는 내셔널 지오그래픽의 추정을 바탕으로 해안선 변화 영상을 제작했다. 이 시나리오에 따르면, 많은 유럽 도시들, 예를 들어 브뤼셀과 베니스는 실질적으로 물에 잠길 것으로 예상된다. 아프리카와 중동에서는 다카르, 아크라, 제다와 같은 주요 도시들이 사라질 위험에 처한다. 아시아에서는 인도의 뭄바이, 중국의 베이징, 일본의 도쿄와 같은 대도시들에서 수백만 명의 사람들이 내륙으로 이주해야 할 정도로 심각한 변화가 일어날 것으로 보인다. 남미에서도 리우데자네이루와 부에노스아이레스와 같은 주요 도시들이 물에 잠길 가능성이 있다. 미국에서는 플로리다 주 전체와 휴스턴, 샌프란시스코, 뉴욕 등의 도시들이 점차 바다에 잠기는 모습을 목격하게 될 것으로 예측된다. 이러한 변화는 해수면 상승의 심각한 결과를 시각적으로 보여주며, 기후 변화의 중대한 영향을 강조한다. 해수면 상승은 지역 사회에 심각한 영향을 미칠 수 있으며, 이러한 영향을 자세히 살펴볼 수 있는 지도가 존재한다. 이 지도를 보면 해수면 상승의 결과를 긍정적으로 상상하기 어려울 정도로 충격적인 변화가 예상된다. 특히, 이러한 현상이 우리 모두에게 충분히 발생할 수 있는 실질적인 결과로 여겨지기 때문에 더욱 경각심을 일으킨다. 미국에서 인구가 가장 많은 지역 대부분은 해수면 상승의 영향을 심각하게 받을 것으로 예상된다. 알렉스 팅글(Alex Tingle)이 나사의 데이터를 바탕으로 제작한 지도를 통해 볼 때, 서부해안의 샌프란시스코, 동부해안의 필라델피아, 걸프 해안의 버번 스트리트 등 많은 지역이 위험에 처해있다는 것을 알 수 있다. 이 주제를 다루는 것은 재미를 위한 것이 아니라, 기후 변화로 인해 해수면 상승과 같은 현상이 실제로 발생할 가능성이 있다는 점에서 우리에게 중요한 경고를 주고 있다. 지속적인 화석 연료 사용과 탄소 배출로 인해 지구는 점점 더워지고 있으며, 이는 빙하가 녹고 있음을 의미한다. 미국, 영국, 독일의 연구자들이 지난 9월 발표한 연구에 따르면, 남극 빙상을 완전히 녹일 수 있는 양의 화석 연료 자원이 존재한다고 한다. 이러한 사실은 기후 변화의 심각성을 더욱 강조하며, 지속 가능한 에너지 소스로의 전환과 환경 보호를 위한 긴급한 행동이 필요함을 시사한다. 우리는 기후 변화에 대응하기 위해 보다 적극적이고 지속 가능한 방법을 모색해야 할 책임이 있다. 기존에 언급된 기후 관련 재난은 확실히 가능성의 범위 안에 들어가며, 이러한 상황은 현재의 행동이 미래에 큰 영향을 미칠 수 있음을 보여준다. 이번 연구의 주요 저자이자 기후영향 연구소의 리카다 윈켈만(Ricarda Winkelmann)은 "이러한 변화가 하룻밤 사이에 발생하지는 않겠지만, 우리의 현재 행동이 지구의 모습을 바꾸고, 이러한 영향이 수만 년 동안 지속될 것이라는 사실이 놀랍다"고 지적했다. 윈켈만은 또한 "이러한 재난을 막기 위해서는 석탄, 가스, 석유와 같은 화석 연료를 지속적으로 사용하지 않고 땅에 그대로 묻어두어야 한다"고 강조했다. 이는 기후 변화에 대응하기 위한 즉각적이고 구체적인 조치를 취해야 한다는 중요한 메시지를 전달한다. 지구 환경을 보호하고 기후 변화의 위험을 최소화하기 위해 지속 가능한 에너지 소스로의 전환과 환경 보호 노력이 필수적이다. 희망적인 점은, 대부분의 해안선이 아직 손상되지 않았다는 사실이다. 만약 우리가 지금부터라도 적극적으로 행동에 나선다면, 이러한 상태를 보존할 수 있는 가능성이 있다. 또한 긍정적인 변화로, 세계 지도자들이 기후 변화를 글로벌 위기로 인식하고 이에 대응하기 시작했다는 사실이다. 이는 지구 온난화와 해수면 상승의 심각성을 깨닫고, 이에 대한 책임 있는 조치를 취하는 것이 얼마나 중요한지를 보여준다. 기후 변화 대응을 위한 글로벌 협력과 지속 가능한 정책 추진은 해안선 보존과 더 나은 미래를 위한 필수적인 단계임을 의미한다. 기후변화에 대응하기 위해, 많은 기업들이 '탄소제로' 달성을 목표로 활발한 움직임을 보이고 있다. '탄소제로'란 기업 활동에서 발생하는 이산화탄소를 최대한 줄이고, 절감이 불가능한 부분은 탄소배출권을 매입하여 이산화탄소 배출량을 실질적으로 '0'으로 만드는 전략을 말한다. 특히, 우리나라에서는 대기업을 중심으로 'RE100' 캠페인이 활발하게 진행되고 있다. 이 캠페인은 재생 가능한 에너지를 100% 사용하는 것을 목표로 하며, 탄소 배출을 줄이고 친환경 에너지 사용을 촉진함으로써 기후 변화에 적극적으로 대처하고자 하는 기업들의 노력을 반영한다. 이러한 기업들의 노력은 기후 변화 대응에 있어 중요한 역할을 하며, 지속 가능한 미래를 위한 긍정적인 변화를 가져오고 있다.
-
- 생활경제
-
남극대륙 빙하 녹으면 지구는 어떻게 변할까?
-
-
뮌헨공대, 태양광 수소 생산 세계 최고…경제성 확보 과제
- 독일 뮌헨대학교 연구팀이 태양광 수소 생산 분야에서 세계 기록을 경신했다. 이들은 햇빛을 활용하여 포름산으로부터 수소를 생산하는 플라즈몬 나노구조를 개발하여 녹색 수소 개발에 획기적인 발전을 이루어냈다. 산업 전문매체 '오일프라이스(Oil Price)'는 뮌헨대학교 연구팀의 이 발견이 획기적이라면서도 고가의 원자재를 사용하는 한계로 인해 경제적인 측면에서 더 효과적인 대안을 모색해야 한다고 지적했다. 뮌헨대학교 연구팀은 녹색 수소 생산 분야에서 세계적인 기록을 경신했으며, 이러한 성과를 이루어낸 고성능 나노구조를 개발했다. 뮌헨대학교 실험물리학 및 에너지 변환 교수인 에밀리아노 코르테스(Emiliano Cortés)는 나노우주로의 도약을 이루어냈다. 코르테스 교수는 "태양광의 고에너지 입자가 원자 구조와 상호 작용하는 지점에서 연구가 시작되었다"라며 "태양에너지를 더 효율적으로 활용하기 위한 소재 솔루션을 연구 중"이라고 설명했다. 이러한 발견은 새로운 태양전지와 광촉매의 가능성을 열어두고 있다. 그러나 코르테스 교수는 "햇빛이 희석돼 지구에 도달하기 때문에 면적당 에너지가 상대적으로 낮다"는 문제에 직면하고 있다고 말했다. 헤란 박사는 "먼저, 우리는 플라즈몬 금속(우리 경우에는 금)에서 10~200나노미터 범위의 입자를 생성했다"라며 "이 크기에서 가시광선은 금 전자와 매우 강하게 상호작용하여 공명 진동을 유발한다"라고 설명했다. 이러한 현상을 통해 나노입자는 더 많은 햇빛을 포착하고, 매우 높은 에너지의 전자로 변환할 수 있다는 것을 밝혔다. 헤란 박사는 "이러한 과정에서 매우 국지적이고 강한 전기장이 핫스팟에서 발생한다"고 말했다. 이러한 핫스팟은 금 입자 사이에서 형성되며, 따라서 두 사람은 백금 나노입자를 이러한 핫스팟 사이 공간에 직접 배치하는 아이디어를 얻었다. 오늘날 수소는 주로 화석 연료, 주로 천연가스에서 생산된다. 그러나 두 사람은 "플라즈몬 금속과 촉매 금속의 결합을 통해 이산화탄소를 유용한 물질로 변환하는 등 다양한 산업 응용 분야를 위한 강력한 광촉매를 개발 중이다"라고 밝혔다. 이들은 이미 이러한 물질 개발에 대한 특허를 취득했다. 또한, 이전에 매사추세츠 공과대학(MIT)의 엔지니어들이 태양열을 활용하여 온실가스 배출 없이 수소를 효율적으로 생산하는 '태양열화학수소' 시스템을 개발했다. MIT, 태양열 최대 40% 활용 기존의 태양열 열화학 수소 생산 시스템은 효율성이 낮았지만, MIT의 설계는 태양열을 최대 40%까지 효율적으로 활용할 수 있다. 이 시스템은 태양열을 활용하여 물을 분해하고, 이 과정에서 생성된 수소를 청정 연료로 사용할 수 있게 한다. 이렇게 생산된 수소는 장거리 트럭, 선박, 항공기의 연료로 사용될 수 있으며, 온실가스가 전혀 배출되지 않는다. MIT의 새로운 시스템은 집중형 태양열 발전소(CSP) 방식을 사용하며, 다수의 거울을 활용하여 태양광을 집중시켜 열을 발생시킨다. 이렇게 집중된 열은 수소 생산에 활용된다. 한국의 DGIST(대구경북과학기술원)와 단국대학교 연구팀은 친환경적인 양자점을 활용하여 세계 최고 수준의 태양광 수소 생산 기술을 개발했다. 이 기술은 양자점의 물성을 조절하여 광전기화학 소자에 적용, 태양광을 효과적으로 수소 생산에 활용하는 방법을 제공한다. 게다가 한국의 DGIST(대구경북과학기술원)와 단국대학교 연구팀은 친환경적인 양자점을 활용하여 세계 최고 수준의 태양광 수소 생산 기술을 개발했다. 이 기술은 양자점의 물성을 조절하여 광전기화학 소자에 적용함으로써, 태양광을 효과적으로 수소 생산에 활용할 수 있는 방법을 제시한다.
-
- 산업
-
뮌헨공대, 태양광 수소 생산 세계 최고…경제성 확보 과제
-
-
美 노스웨스턴대 "바다 쓰레기 주범 나일론, 촉매로 순식간에 '분해'"
- 바닷속 쓰레기로 전 세계가 몸살을 앓고 있다. 특히, 어망 등이 고래나 바다거북, 물개 등 해양생물을 칭칭 감싸고 있는 모습은 충격을 던져줬다. 나일론 어망 등은 뛰어난 내구성 때문에 자연 분해가 불가능해 해양동물과 산호초, 새, 바다 등을 위험에 빠뜨리고 있다. 해양 환경에 유입된 이들 물질은 분해되지 않고 수천 년 동안 머무를 수 있어 더욱 큰 폐해가 예상되고 있다. 그러나 최근 미국 노스웨스턴대학교 연구팀이 나일론을 분해하는 새로운 촉매를 개발해 이 같은 해양오염을 크게 줄일 수 있을 것으로 기대된다. 이 촉매는 몇 분 만에 내구성 높은 플라스틱 오염을 완전히 분해하는 것으로 알려졌다. 과학기술 전문 매체 '사이테크데일리(SciTechDaily)'는 미국 노스웨스턴 대학 연구팀이 개발한 새로운 나일론 분해 촉매에 대해 최근 보도했다. 연구팀은 유해한 부산물을 생성하지 않고 몇 분 만에 나일론-6을 빠르고 깨끗하며 완전히 분해하는 새로운 촉매를 개발했다. 더 좋은 점은 이 공정에는 독성 용매, 고가의 재료 또는 극한 조건이 필요하지 않아 일상적인 응용 분야에 실용적이라는 점이다. 연구팀은 이 촉매를 활용해 해양 플라스틱 오염을 줄이는 것은 물론, 폐기물 재활용과 순환경제 활성화에도 기여할 수 있을 것으로 기대하고 있다. 이번 연구 결과는 국제 학술지 '켐(chem)'에 게재됐다. 이번 연구의 수석 저자인 노스웨스턴 대학의 토빈 마크스(Tobin Marks) 교수는 "전 세계가 플라스틱 문제의 심각성을 인식하고 있다"며 "우리는 플라스틱을 재활용하기 위해 폴리머를 분해하여 원래 형태로 되돌려 재사용할 수 있는 촉매를 개발하고 있다"고 말했다. 어망, 태평양 쓰레기 46% 차지 나일론-6은 의류, 카펫, 안전벨트 등 매일 사용되는 다양한 제품에 사용되는 소재다. 하지만 사용 후에는 매립되거나 해양을 포함한 환경에 방치되는 경우가 많다. 세계야생생물연맹(World Wildlife Federation) 보고에 따르면 매년 약 45만3592kg(약 100만 파운드)의 낚시 장비가 해양에 버려지며, 이 중 나일론-6로 만들어진 어망이 태평양의 거대한 쓰레기 더미에서 차지하는 비율이 최소 46%에 이른다. 현재 나일론-6 처리 방법은 주로 매립에 의존하고 있다. 나일론-6가 연소될 때는 질소산화물 같은 독성 오염물질을 배출해 조기 사망과 온실가스인 이산화탄소 배출 등의 문제를 야기한다. 마크스 교수는 플라스틱을 분해하는 과정에서 발생하는 오염물질 문제를 지적하며, 친환경 용매의 사용이 중요하다고 강조했다. 그는 "플라스틱을 분해하면 오염된 물이 남게 되며, 친환경 용매의 사용은 필수적"이라며 "어떤 종류의 용매가 환경에 더 적합한지 연구해야 한다"고 말했다. 업사이클링을 위한 나일론 복구 마크스 교수와 연구팀은 실험실에서 새로운 촉매를 개발했다. 이 촉매는 이트륨(지구상에 풍부한 경제적인 금속)과 란탄족 이온을 활용한다. 나일론-6를 녹는 온도까지 가열한 뒤 촉매를 추가하자, 용매 없이도 플라스틱이 분해되어 부산물 없이 원래의 빌딩 블록으로 복구됐다. 마크스 교수는 이 과정을 목걸이와 진주에 비유하며 설명했다. 그는 "폴리머는 목걸이와 같으며, 각 진주는 하나의 단위체, 즉 단량체다. 우리는 이 목걸이를 해체하여 진주, 즉 빌딩 블록을 회수하는 방법을 찾은 것"이라고 말했다. 실험을 통해 연구팀은 플라스틱의 원래 모노머를 99% 회수할 수 있었다. 원칙적으로 이러한 모노머는 현재 강도와 내구성에 대한 수요가 높은 고부가가치 제품으로 재활용될 수 있다. 이 실험을 통해 연구팀은 나일론의 원래 모노머를 99% 회수하는 데 성공했다. 이러한 모노머는 내구성과 강도가 높은 고부가가치 제품으로 재활용될 수 있다. 마크스 교수는 재활용된 나일론이 일반 나일론보다 경제적 가치가 더 높다고 강조했다. 나일론-6를 효율적으로 타깃팅 새롭게 개발된 촉매는 높은 수율의 단량체 회수뿐만 아니라, 선택성도 뛰어나 나일론-6 중합체에만 작용한다. 이는 폐기물 중에서도 나일론-6를 효과적으로 분리해낼 수 있다는 것을 의미하며, 업계에 대량의 분류되지 않은 폐기물에도 적용 가능함을 보여준다. 마크스 교수는 이 과정의 경제성과 효율성을 강조했다. 그는 "나일론 폐기물을 사람이 일일이 분류하는 것은 비용이 많이 들고 비효율적이다. 하지만 이 촉매가 나일론만을 대상으로 하고 다른 물질은 그대로 두기 때문에 효율적이다"라고 설명했다. 이 기술을 통해 회수된 모노머를 재활용하면 신규 플라스틱 생산의 필요성도 줄어들 수 있다. 마크스 교수와 연구팀은 이 새로운 공정에 대한 특허를 출원했으며, 이미 여러 산업 파트너로부터 관심을 받고 있다. 이들은 자신들의 촉매가 대규모로 활용되어 글로벌 플라스틱 문제 해결에 기여하기를 기대한다. 현재 이 연구는 폴리머 재활용 및 지속 가능한 재료 관리 분야에서 중요한 진전을 보이고 있다. 이러한 접근 방식은 현재 재활용 기술의 중요한 격차를 해결하고 나일론 폐기물 문제에 대한 실용적이고 효율적인 솔루션을 제공한다. 이는 플라스틱의 환경 발자국을 줄이고 순환경제에 기여하는 데 영향을 미칠 것으로 기대된다.
-
- 생활경제
-
美 노스웨스턴대 "바다 쓰레기 주범 나일론, 촉매로 순식간에 '분해'"
-
-
SK이노베이션, 이산화탄소를 일산화탄소로 전환 성공
- SK이노베이션은 자체 개발한 전기화학적 촉매 반응을 통해 이산화탄소를 일산화탄소로 전환하는 기술에 성공했다고 3일 밝혔다. SK이노베이션 산하 연구개발(R&D) 조직인 환경과학기술원은 '이원자(二原子) 촉매 기술'을 이용해 이산화탄소를 선택적으로 일산화탄소로 변환해 하루 1㎏ 상당의 일산화탄소를 제조하는 데 성공했다. 이 기술은 화학 반응 속도를 조절하는 촉매의 성능을 향상시키는 것으로, SK이노베이션에 따르면, 기존의 수백 개 원자가 결합된 촉매와 달리 단원자 촉매를 사용하여 활성을 더 높였다. 또한, 이를 이원자 형태로 개발함으로써 촉매의 성능을 더욱 개선했다. 원자를 하나씩 분리해 만든 단원자(單原子) 촉매는 수백개 원자가 뭉쳐진 기존 촉매와 달리 활성을 더욱 높이는 기술인데, 이원자 형태로 만들면서 촉매 성능이 더 향상됐다는 설명이다. 연구팀은 니켈과 철을 이원자 형태로 결합한 새로운 촉매를 개발하여 촉매의 효율을 향상시켰다. 이 촉매를 전극 셀이 적층된 전해조에 적용한 결과, 전기화학 촉매 반응을 통해 이산화탄소가 일산화탄소로 전환되는 것을 확인했다. 일산화탄소는 초산, 플라스틱 등 다양한 화학 제품의 생산에 사용되며, 최근에는 메탄올이나 합성 원유와 같은 대체 연료의 생산 원료로도 관심을 받고 있다. SK이노베이션은 이번 연구가 기후 위기의 주요 원인 중 하나인 이산화탄소를 감소시키는 동시에, 중요한 화학 원료인 일산화탄소를 얻을 수 있는 방법을 제공할 것으로 기대하고 있다. SK이노베이션의 이번 연구 성과는 화학공학 분야의 저명한 학술지인 '케미컬 엔지니어링 저널'의 11월 29일자 판에 게재됐다. 이 기술 연구에는 국내 전기화학 시스템 분야의 전문 기업인 테크윈도 참여했다. 이성준 SK이노베이션 환경과학기술원 원장은 이번 연구 성과에 대해 언급하며, '탄소 감축과 기후 위기 대응은 우리 모두가 우선적으로 해결해야 할 과제'라고 강조했다. 또한, '이번 성과는 에너지 및 화학 분야의 연구개발 과정에서 축적된 촉매 기술이 탄소 감축 기술 개발에 적용된 사례로, 앞으로도 연구개발의 핵심 역량을 강화하여 탄소 감축에 지속적으로 기여하겠다'고 밝혔다.
-
- 산업
-
SK이노베이션, 이산화탄소를 일산화탄소로 전환 성공
-
-
화산인가 소행성인가? AI, 공룡 멸종에 답하다
- 전통적으로 공룡의 멸종 원인은 운석의 충돌과 화산 분출 같은 복잡한 요인들로 인식되어 왔다. 그러나 최근에는 인공지능(AI)을 활용한 새로운 접근 방식이 등장했다. 과학기술 전문매체 '사이테크데일리(SciTechDaily)'에 따르면, 미국 다트머스 대학의 연구팀이 AI를 사용해 6600만 년 전 공룡 멸종에 관한 화석 기록을 역설계하는 혁신적인 방법을 시도했다. 이 연구에서 연구팀은 복잡한 지질학적 기후 데이터를 분석할 수 있는 연결된 프로세서 네트워크를 활용하여 '사이언스(Science)' 저널에 결과를 발표했다. 연구팀은 약 130개의 프로세서를 이용해 백악기-팔레오기 멸종(K-Pg) 사건의 원인과 조건을 역추적했다. 다트머스 대학의 지구과학과 대학원생이자 이 연구의 주 저자인 알렉스 콕스(Alex Cox)는 연구의 목표가 가설이나 편견 없이 평가하는 것이었으며, 탄소 순환 모델을 적용해 최소한의 정보만으로 원인을 파악했다고 밝혔다. 콕스는 이 모델이 지질학적 기록에서 어떻게 결론에 도달했는지 보여준다고 설명했다. 이 연구에서 사용된 모델은 K-Pg 멸종 이전과 이후 약 100만 년 동안의 이산화탄소 및 이산화황 배출, 그리고 생물학적 생산성을 포함한 30만 개 이상의 다양한 시나리오를 분석했다. 마르코브 체인 몬테 카를로(Markov Chain Monte Carlo)로 알려진 기계 학습 유형을 통해 프로세서는 독립적으로 협력하여 일치하는 시나리오에 도달할 때까지 결론을 비교, 수정 및 재계산 했으며, 그 결과는 화석 기록에 보존되어 있다. 화석 기록에 담긴 지구화학적 및 유기적 잔존물은 K-Pg 멸종 당시의 격변적인 상황을 선명하게 보여준다. 이 시기는 지질학적으로 유황이 햇빛을 가리고, 공기 중에 미네랄이 가득하며, 이산화탄소로 인해 열이 가두어진 불안정한 대기로 인해 먹이 사슬이 붕괴되어 전 세계의 동식물이 대규모 멸종을 겪은 시기였다. 이러한 효과는 분명하지만, 멸종의 정확한 원인은 아직 명확히 밝혀지지 않았다. 초기에는 화산 폭발로 인한 공룡 멸종 이론이 주목받았으나, 현재는 멕시코에서 발견된 수 마일 너비의 칙슬루브(Chicxulub) 충돌 분화구로 인한 소행성 충돌이 주요 원인으로 여겨진다. 화석 증거가 지구의 역사상 전례 없는 '원투 펀치' 현상을 시사하면서, 과학계의 이론이 점차 수렴하기 시작했다. 이 이론에 따르면, 소행성은 이미 인도 서부 데칸 트랩의 강력한 화산 활동으로 인해 불안정한 상태에 있던 지구에 충돌했을 가능성이 있다. 그러나 과학자들 사이에서는 여전히 이 두 사건이 공룡 대량 멸종에 어느 정도 기여했는지에 대한 의견 일치가 없다. 이에 대해 브레힌 켈러(Brenhin Keller) 다트머스 대학 지구과학 조교수 겸 이 연구의 공동 저자와 알렉스 콕스는 코드가 어떤 결과를 도출하는지 실험해보기로 결정했다. 해당 연구팀의 모델은 데칸 트랩에서 방출된 기후 변화를 일으키는 가스가 단독으로도 전 지구적인 멸종을 촉발할 수 있음을 시사한다. 데칸 트랩의 화산 활동은 칙슬루브 소행성의 충돌보다 약 30만 년 전에 시작되었으며, 이 폭발은 거의 100만 년 동안 지속되었다. 이 기간 동안 데칸 트랩은 최대 10조 4000억 톤의 이산화탄소와 9조 3000억 톤의 황을 대기 중으로 배출했을 것으로 추정된다. 브레힌 켈러는 이에 대해 "역사적으로 화산 활동이 대규모 멸종을 일으킬 수 있다는 것은 잘 알려져 있지만, 이번 연구는 환경에 미치는 영향을 증거에 근거하여 휘발성 물질의 배출량을 독립적으로 추정한 최초의 사례"라고 설명했다. 그는 이어 "우리 모델은 인간의 편견 없이 독립적으로 데이터를 분석하여 지질학적 기록에서 볼 수 있는 기후와 탄소 순환의 교란에 필요한 이산화탄소와 이산화황의 양을 결정했고, 이는 데칸 트랩의 배출량과 일치하는 것으로 나타났다"고 덧붙였다. 연구팀의 모델은 칙슬루브 충돌 당시 심해에서 유기 탄소의 축적이 급격히 감소한 사실을 밝혀냈다. 이는 소행성 충돌이 다수의 동식물 종의 멸종을 초래했을 가능성이 크다는 것을 의미한다. 또한, 기록에 따르면 매머드급 운석이 유황이 풍부한 표면과 충돌했을 때, 대기 중으로 유황(단기 냉각 효과를 가진)이 대량으로 방출되었을 가능성이 있으며, 이와 연관된 기온 하락의 흔적이 발견된다. 소행성 충돌은 탄소와 이산화황을 방출했을 가능성이 높지만, 모델은 이 두 가스의 방출이 그 당시 급격히 증가하지 않았음을 발견했다. 이는 소행성 충돌이 멸종에 기여한 주요 원인이 가스 방출이 아니었을 가능성을 시사한다. 콕스는 현대 맥락에서 볼 때, 2000년부터 2023년까지 화석 연료의 연소로 인해 연간 약 160억 톤의 이산화탄소가 대기 중으로 배출되었다고 언급했다. 이는 데칸 트랩에서 과학자들이 추정하는 최대 연간 배출량보다 약 100배 더 많은 양이다. 콕스는 현재의 이산화탄소 배출량이 고대 화산에서 방출된 총량과 일치하기까지 여전히 수천 년이 소요될 것이라고 언급했다. 이는 자체적으로 매우 놀라운 사실이다. 그는 "우리 연구의 결과가 물리적으로 타당하다는 것이 가장 고무적인 부분이며, 이는 모델이 강력한 사전 제약 없이도 기술적으로 완벽하게 실행될 수 있음을 시사한다"고 말했다. 또한, 연구팀은 프로세서를 상호 연결하여 대규모 데이터 세트의 분석 시간을 몇 달 또는 몇 년에서 몇 시간으로 대폭 단축하는 데 성공했다. 이는 과학적 연구의 효율성과 속도를 혁신적으로 개선한 사례로 볼 수 있다 콕스는 "이와 같은 유형의 병렬 역전 과정은 지구 과학 모델링 분야에서 이전에는 시도된 적이 없었다"고 언급했다. 그는 이어 "우리의 방법론은 수천 개의 프로세서를 동원할 수 있어, 훨씬 더 광범위한 솔루션 공간을 탐색할 수 있으며, 인간의 편견으로부터 크게 자유롭다"고 설명했다. 그는 또한 "지금까지 우리 분야의 전문가들은 우리가 도달한 결론보다는 이 새로운 방법론에 더 매료되어 왔다"라고 말했다. 콕스는 "지구 시스템에 대해 우리가 결과는 알지만 원인은 모르는 경우가 많으며, 이러한 시스템은 역전될 가능성이 높다. 출력에 대한 더 나은 이해는 그 결과를 초래한 입력을 더 정확하게 특성화하는 데 도움이 된다"고 덧붙였다.
-
- 생활경제
-
화산인가 소행성인가? AI, 공룡 멸종에 답하다
-
-
韓·인니, 니켈 등 핵심광물 공급망 강화 협력 강화
- 한국과 인도네시아가 핵심광물 공급망 강화를 위한 협력을 강화하기로 합의했다. 산업통상자원부(장관 방문규)와 인도네시아 에너지광물자원부(장관 아리핀 타스리프)는 28일(화) 인도네시아 자카르타에서 '제14차 한-인니 에너지포럼'을 개최하고, 핵심광물 공급망 강화를 위한 양국 간 협력을 강화하기로 했다고 밝혔다. 한국과 인도네시아는 지난 1979년 에너지 분야 정책 교류와 협력사업 발굴을 위해 자원협력위원회를 설치했고, 이 위원회를 2007년 한·인니 에너지포럼으로 개편하면서 연례화했다. 이번 포럼은 양국 간 에너지 협력을 강화하고 한국 기업들의 인도네시아 비즈니스 기회를 창출하는 데 기여할 것으로 기대된다. 올해 포럼은 주제별로 석유·가스·광물 협력(1세션), 전력·신재생에너지 협력(2세션), 상호협력 구축(3세션) 등 3개 세션으로 나눠 진행됐다. 이날 포럼에서 양국은 한국지질자원연구원(원장 이평구)과 인도네시아 반둥공과대학 간의 '한-인니 핵심광물 공동연구 센터'를 공식 출범시켰다. 이 센터는 이차전지용 고순도 니켈 제조 공정 및 폐배터리 재활용 기술 등을 공동으로 연구할 계획이다. 이번 협력은 인도네시아의 풍부한 니켈, 주석 등 광물 매장량을 바탕으로 한국이 보다 안정적인 자원 확보를 기대할 수 있는 발판을 마련할 것으로 보인다. 인도네시아는 2021년 기준 니켈(세계 1위), 주석(2위), 금(5위), 보크사이트(6위), 석탄(7위) 등 방대한 광물자원 매장량을 보유하고 있다. 특히 매장량 면에서 니켈은 2100만톤(22.3%), 주석은 800만톤(18.6%)으로 각각 세계 1, 2위를 차지했다. 포럼에서는 또한 석유·가스, 이산화탄소 포집·저장(CCS), 수소, 소형원전(SMR) 등 에너지 전 분야에 걸쳐 양국 간 협력 강화 방안도 논의됐다. 양국은 기후위기 대응을 위해 수소 생산 신설, CCS 실증사업, SMR 개발 등 다양한 분야에서 협력을 강화하기로 했다. 이를 통해 음식물 쓰레기 등 폐기물을 활용한 수소 생산·활용 인프라 구축, 인도네시아 유·가스전의 이산화탄소 저장소 전환 등의 사업이 진행될 예정이다. 이는 향후 한국 기업들의 수소차 및 관련 설비 수출에 좋은 기회가 될 것으로 전망된다. 오는 29일, 한국지질자원연구원과 인도네시아 반둥공과대학이 참여하는 '한-인니 핵심광물 공동연구센터'가 정식으로 문을 열 예정이다. 산업통상자원부의 한 관계자는 이와 관련하여 "한-인니 공동연구센터를 통해 이차전지용 고순도 니켈 제조 공정 및 폐배터리 재활용 기술에 대한 연구가 활발하게 진행될 것으로 기대한다"고 전했다.
-
- 산업
-
韓·인니, 니켈 등 핵심광물 공급망 강화 협력 강화
-
-
한화오션, 그리스 나프토마와 암모니아 운반선 4척 수주…5억 달러 규모
- 한화오션(Hanwha Ocean)은 그리스 해운 회사 나프토마 쉬핑 앤 트레이딩 주식회사(Naftomar, 나프토)와 약 5억 달러(약 6562억원) 규모의 초대형 암모니아 운반선(VLAC) 4척을 건조하는 계약을 체결했다고 밝혔다. 23일(현지시간) 선박 전문매체 마린링크에 따르면 친환경선박인 각 VLAC는 약 9만3000㎥(cbm)의 암모니아를 운송할 수 있다. 이는 세계에서 가장 큰 용량을 자랑하는 운반선으로, 한화오션의 거제 조선소에서 건조될 예정이다. 이 선박들은 2026년부터 2027년 상반기까지 선주에게 인도된다. 특히 한화오션은 해당 선박인 VLAC 추진축에 모터를 연결해 발전시 연료를 절감할 수 있는 축발전기 모터 시스템과 자체 개발한 스마트십 플랫폼인 'HS4'등 최신 기술을 탑재한다. 또한, 암모니아 이중 연료(DF) 엔진이 장착되어 있어, 향후 선주가 선박을 암모니아 추진으로 전환할 수 있는 옵션을 제공한다. 암모니아는 연소할 때 이산화탄소가 전혀 배출되지 않는 친환경연료다. 또한 간단한 공정을 통해 수소로 변환될 수 있어 가장 경제적인 수소 운반 수단으로 활용 가능하다. 한화오션은 온실가스 배출 현재 규제와 향후 예상되는 규제를 충족하기 위해, 이 새로운 선박들은 나프토마 사의 엄격한 사양 요구 사항에 따라 친환경적인 디자인과 향상된 효율성을 갖추고 건설될 예정이라고 설명했다. 한화오션 측 관계자는 "암모니아는 연소 시 이산화탄소를 배출하지 않아 해운 산업 탈탄소화를 위한 유망한 후보로 간주되고 있다"며 "지난해 한화 오션은 9월 프랑스의 분류 협회인 뷰로 베리타스(BV)와 10월 영국의 로이드 등기소(LR)로부터 8만6000㎥ 급 암모니아 운반선에 대한 기본 승인(AiP)을 받았다"고 말했다. 한화오션은 액화석유가스(LPG) 및 암모니아 운반 전문 선사인 나프토마와의 수주 계약을 계기로 친환경 연료 운반선 건조 업계에서 입지를 강화할 방침이다.
-
- 산업
-
한화오션, 그리스 나프토마와 암모니아 운반선 4척 수주…5억 달러 규모
-
-
호주 기업, 수소 없이도 700°C 열과 전기 생산 기술 특허
- 기업 활동 중 발생하는 이산화탄소를 최소화하고, 불가피하게 발생하는 이산화탄소에 대해서는 탄소 배출권을 구매하여 실질적인 탄소 배출량을 '0'으로 만드는 '탄소제로' 전략이 주목받고 있다. 이제는 석유 자원이 풍부한 국가들도 이러한 탄소제로 움직임에 동참하며 청정에너지 개발에 적극적으로 나서고 있다. 미국의 경제 전문 매체 포브스는 텍사스주가 세계에서 두 번째로 석유 자원이 풍부함에도 불구하고 호주로부터 수소열 에너지를 도입하려는 배경을 최근 분석했다. 포브스에 따르면, 텍사스주는 기존의 석유나 천연가스 대신 탄소 배출이 적은 청정 에너지 소스에 주목하고 있다. 특히 수소는 청정 에너지로 분류되며, 자동차 엔진에서 연소되거나 전기로 변환될 때 탄소를 배출하지 않는다. 하지만, 높은 온도에서는 산화질소나 질소산화물을 방출할 수 있다. 수소의 생산 방식에 따라 그 환경적 영향이 달라질 수 있다. 메탄을 사용해 제조되는 청색 수소는 비용이 저렴하지만 환경적으로 깨끗하다고 볼 수 없다. 반면, 물을 전기분해하여 만드는 녹색 수소는 비용이 더 들지만 환경에 더 친화적이다. 호주 기업, 뉴멕시코주에 신규 공장 건설 뉴멕시코주는 연소 과정 없이 수소를 열 에너지로 전환하는 새로운 기술을 보유하고 있어, 호주로부터의 수소 도입을 통해 이를 열 에너지로 변환하고자 한다. 이 기술은 중공업에서 바로 사용하거나 거의 모든 전기 응용 분야에서 전기로 변환할 수 있는 잠재력을 가지고 있다. 특히, 연소 과정이 없다는 점은 석탄을 태워 열을 생성하고 전기를 생산하는 전통적인 발전소의 복잡한 기계적 단계를 건너뛸 수 있음을 의미한다. 이러한 접근은 나쁜 탄소 배출을 크게 줄일 수 있는 방법으로, 환경 보호와 지속 가능한 에너지 사용을 위한 중요한 전략 중 하나이다. 호주에 본사를 둔 스타 사이언티픽(Star Scientific)은 2024년 뉴멕시코주 앨버커키에서 새로운 공장 건설을 시작할 계획이라고 발표했다. 이 프로젝트에는 약 1억 달러(약 1297억원)가 투자될 예정이며, 공장은 최대 50에이커 규모의 부지에 10개의 건물로 구성될 예정이다. 이 공장은 연구부터 관리까지 다양한 부서를 아우르며 약 200명의 직원을 고용할 것으로 기대된다. 이번 투자는 뉴멕시코주의 미셸 루잔-그리샴(Michelle Lujan-Grisham) 주지사와 스타 사이언티픽의 글로벌 그룹 회장인 앤드류 호바스(Andrew Horvath)가 지난달 시드니에서 만난 자리에서 발표됐다. 실험 시연서 713°C까지 치솟아 이 회사는 핵융합 연구 중에 흥미로운 발견을 했다. 수소 가스와 산소 가스가 결합하여 물을 형성하도록 촉진하는 동시에 반응에서 상당한 양의 열을 방출하는 새로운 촉매를 발견했다. 이 과정은 물리학이 아닌 화학 반응에 속하며, 두 개의 수소 원자가 헬륨으로 융합되어 핵 에너지를 방출하는 과정과 유사하다. 이러한 원리는 수소 폭탄의 작동 원리를 연상시킨다. 실험실에서 수행된 시연에서는 수소와 산소 유입 파이프를 사용했다. 이 실험에서 온도는 단 몇 분 만에 713°C까지 급상승했으며, 촉매가 뜨거워지며 주황색으로 변하는 현상이 관찰됐다. 이러한 높은 온도는 연소 과정 없이도 일부 산업 공정에 필요한 열을 제공할 수 있어 공정을 단순화하는 데 기여할 수 있다. 이 촉매는 회사의 비밀로 유지되고 있으며, 이미 특허를 받았다. 이 과정은 '헤로(HERO, Hydrogen Energy Release Optimiser)'라고 명명되었으며, 이는 '수소 에너지 방출 최적화'라는 의미를 담고 있다. 이 새로운 기술을 사용하면 집과 사무실의 난방에 최대 700°C까지 필요한 온도를 조절할 수 있다. 또한, 이 과정을 통해 물을 가열하여 증기를 만들고, 그 증기로 터빈을 구동하여 전기를 생산할 수도 있다. 이러한 과정은 석탄 화력 발전소에서 일어나는 과정과 유사하지만, 석탄 연소로 인한 무거운 탄소 배출이 없다는 점에서 차이가 있다. 스타 사이언티픽에 따르면, 기존 발전소에서 석탄 연소 보일러를 이들의 HERO 공정으로 교체하면 탄소 배출량을 크게 줄일 수 있다. 만약 유입되는 수소가 그린수소라면, 전 과정에서 탄소 배출이 전혀 발생하지 않는다. 하지만, 물을 수소와 산소로 전기분해하는 과정은 상당한 에너지를 소모하는 비효율적인 방법일 수 있다. 청색 수소를 사용하는 경우, HERO의 전체 수명에 대한 이점은 명확하지 않다. 이는 청색 수소 생산 과정에서 발생하는 이산화탄소가 탄소 포집 및 저장(CCS)을 통해 시스템에서 제거되어야 하기 때문이다. 이러한 점들을 고려할 때, HERO 기술의 환경적 이점은 사용되는 수소의 종류에 크게 의존한다고 볼 수 있다. HERO, 수소 연료전지와 장점 공유돼야 수소 연료 전지는 양극과 음극을 갖추고 있으며, 배터리의 작동 원리와 유사한 방식으로 전기를 생산한다. 이 시스템은 고가의 백금 촉매를 사용하는 것이 일반적이다. 연료 전지는 전기와 열을 동시에 생산하지만, 대부분의 경우 열은 크게 활용되지 않는다. HERO는 특히 전력 공급이 작은 것으로 알려진 부문(약 9%)에서 이점을 가져야 한다. 리스타드 에너지(Rystad Energy)의 분석에 따르면, 산업 연소라 불리는 분야(15%)는 전기화를 통해 해결할 수 있으며, 이는 배터리를 사용하는 것이 가능하다. 연료 전지와 HERO는 이러한 분야에서 기회를 포착해야 한다. 연료 전지의 에너지 변환 효율은 약 65%로, 석탄 화력 발전소의 34%와 비교했을 때 상대적으로 높은 편이다. HERO의 효율성은 특정 애플리케이션에서 매우 중요하며, 성능, 비용과 내구성이 입증되면, 운송, 상업 및 주거용 건물의 난방, 가역 그리드 시스템 등 다양한 분야에서 전력이나 열을 공급하는 데 유용하게 사용될 수 있다. 스타 사이언티픽은 HERO에 대해 매우 낙관적이며, 이 기술이 시멘트 공장과 같은 산업 공정에서 필요한 열을 충분히 발생시킬 수 있으며, 장거리 운송이나 화석 연료를 사용하는 중공업 공정과 같이 탈탄소화하기 어려운 부문에서도 유용하게 적용될 수 있다고 강조하고 있다. 이는 탄소 배출을 줄이는 데 중요한 역할을 할 수 있는 혁신으로 평가받고 있다. 뉴멕시코주 주지사 사무실에 따르면 호주의 스타 사이언티픽은 올해 뉴멕시코주에 성공적으로 유치된 싱가포르, 대만, 독일 기업들에 이어 가장 최근에 합류한 국제 기업이다. 제임스 케네이(James Kenney) 뉴멕시코 환경부 장관은 “회사는 수소에 대한 주지사의 낙관적인 접근 방식과 기후 변화 대응에 대한 우리 주의 낙관적인 접근 방식에 매료됐다“고 말했다. 바이오테크, 혁신적인 수소 생산 스타 사이언티픽은 뉴멕시코주에 기반을 둔 수소를 생산하고 판매하는 바이오테크(BayoTech)의 혁신적인 방식에 깊은 인상을 받은 것으로 전해졌다. 바이오테크는 화학 공장 및 정유소에 수소를 공급하는 기존의 대규모 중앙 집중식 공장들보다 더 저렴하고 탄소 배출량이 적은 수소를 생산한다. 이 회사는 깨끗한 천연가스 또는 바이오메탄 소스를 원료로 사용하여 수소를 제조하고 있다. 바이오테크는 지난 11월 2일 미주리주 웬츠빌에 새 수소 허브를 완공했다고 밝혔다. 이 허브는 연간 350톤의 수소를 생산할 수 있는 능력을 가지고 있으며, 이 수소는 연료전지와 산업 공정에 사용될 예정이다. 또 바이오테크는 니콜라(Nikola) 수소 연료 전지로 구동되는 전기 세미 트럭과 뉴 플라이어(New Flyer) 연료전지 버스를 시연했다. 아울러 니콜라와의 파트너십을 통해 니콜라 연료전지 트럭 50대를 구매할 계획을 발표했다. 이러한 발전은 수소 에너지와 관련된 기술의 발전뿐만 아니라, 수소 기반 교통 수단의 상업적 활용 가능성을 더욱 확장시키는 중요한 진전을 나타낸다. 바이오테크의 이번 발표와 계획은 미래의 친환경 교통 수단에 대한 투자와 연구의 중요성을 강조하며, 지속 가능한 에너지 솔루션에 대한 지역 사회와 산업계의 관심을 끌고 있다.
-
- 산업
-
호주 기업, 수소 없이도 700°C 열과 전기 생산 기술 특허
-
-
HD한국조선해양, LNG선 2척 역대 최고가로 수주
- HD현대의 조선 중간지주사인 HD한국조선해양이 고부가가치 선박인 액화천연가스(LNG) 운반선을 역대 최고가로 수주했다. HD한국조선해양은 아프리카 라이베리아소재 선사와 17만4000㎥급 LNG 운반선 2척에 대한 건조계약을 수주했다고 14일 공시했다. 총 수주금액은 6981억원이다 척당 수주 금액은 2억6500만달러(약 3491억원)로 지난 8월 HD한국조선해양이 수주한 LNG 운반선과 달러로 표시된 금액은 같지만 환율 상승으로 원화 수주 금액이 커지면서 역대 최고가를 기록했다. 이번에 수주한 선박은 울산 HD현대중공업에서 건조돼 2028년 2월까지 선주사에 인도된다. 한국조선해양은 현재까지 총 145척(해양 1기 포함) 203억6000만 달러를 수주, 연간 수주 목표 157억4000만 달러의 129.4%를 달성했다. 선종별로는 PC선 37척, 컨테이너선 29척, LPG·암모니아운반선 26척, LNG운반선 37척, PCTC 4척, 탱커 7척, 액화이산화탄소운반선 2척, 중형가스선 2척, 해양 1기를 수주했다.
-
- 산업
-
HD한국조선해양, LNG선 2척 역대 최고가로 수주
-
-
HJ중공업, 8500TEU급 탄소 포집 친환경 컨테이너선 개발
- HJ중공업은 선박에서 발생하는 이산화탄소를 포집·저장한 뒤 하역할 수 있는 8500TEU(1TEU는 20피트 컨테이너 1개)급 친환경 컨테이너선 개발에 성공했다고 13일 밝혔다. 이 회사는 액화천연가스(LNG)를 이용한 이중연료 시스템과 무평형수 선박, 메탄올 추진선, 수소 선박 개발 등 탄소중립을 앞당길 수 있는 기술력을 지속적으로 쌓아왔다. HJ중공업은 이번 기술 개발로 친환경 선박 전문 조선사로 도약할 수 있는 발판을 마련했다고 말했다. 앞서 HJ중공업은 지난 4월 국제해사기구(IMO)의 '2050년 온실가스 배출 넷제로(Net-Zero)' 목표에 따라 강화되는 해상 환경 규제에 선제적으로 대응하기 위해 세계적인 선박용 엔진 제조사인 핀란드 바르질라(Wartsila)사와 공동 개발 협약을 체결했다. 양사는 온실가스 감축을 넘어 탄소중립을 실현할 수 있는 차세대 친환경 선박 기술 개발을 위해 6개월여간 공동연구에 전념했다. 그 결과 바르질라의 CCS 시스템을 HJ중공업의 8500TEU급 컨테이너선에 적용함으로써 선박의 엔진이나 보일러에서 배출되는 탄소를 포집, 액체 상태로 저장 후 하역할 수 있는 새로운 선박 디자인을 개발했다. 국제 CCS 연구소(Global CCS Institute)는 탄소 포집·저장(CCS) 분야 연구기관으로, 세계 여러 나라의 탈탄소 정책 추진으로 글로벌 탄소 포집·저장 시장은 매년 30% 이상 성장해 2050년 포집량이 76억t에 이를 것으로 예상한다. HJ중공업이 이번에 개발한 탄소 포집 8500TEU급 컨테이너선은 동급 메탄올 추진선에 메탄올이 아닌 기존 석유계 연료를 사용하더라도 IMO 규제를 충족시킬 수 있을 정도로 높은 효율의 이산화탄소 포집이 가능하다. 이 회사는 LNG나 메탄올 연료 추진 선박에도 이 기술을 적용해 이산화탄소 배출을 추가로 줄일 수 있다고 전했다. 이번에 개발한 기술은 CCS시스템을 선체에 최적화하고 CCS 운영에 필요한 연료 역시 에너지 절감 장비를 통해 최소화한 것이 특징이다. 이와 함께 선박의 기존 화물적재량에 영향을 주지 않도록 CCS 시스템을 선체에 최적화했고, CCS 운영에 필요한 연료 역시 에너지 절감 장비를 통해 최소화한 것이 특징이다. HJ중공업은 배기가스에서 포집된 이산화탄소는 선박 내부에 액화되어 저장되며, 하역 후 지하 폐유정에 저장하거나 이산화탄소를 필요로 하는 다양한 산업에 활용된다고 설명했다. 이 회사는 이번 CCS 컨테이너선 선박 개발로 탄소중립 시장의 선점과 글로벌 CCS 선박 시장에서 우위를 확보하려는 전략을 세웠다. HJ중공업의 한 관계자는 "IMO의 환경 규제 강화에 따라 선박용 탄소 포집 기술이 중요성을 더해가고 있다"며 "2050년 탄소 제로 목표에 부응하여 지속적인 연구 개발을 통해 친환경 선박 시장에서의 기술 리더십을 확립해 나갈 계획"이라고 말했다. 한편, 정식명칭 '주식회사 에이치제이 중공업'은 1937년 설립됐으며 2005년 한진그룹에서 계열 분리됐다. 2021년 12월 한진중공업홀딩스와의 '한진중공업' 사명에 대한 상표권 계약이 만료되어 'HJ중공업'으로 사명을 변경했다. 조선부문 본사는 부산광역시 영도구에 있다.
-
- 산업
-
HJ중공업, 8500TEU급 탄소 포집 친환경 컨테이너선 개발
-
-
한국 스타트업 텔레픽스, 폴란드에 위성 이미지 데이터 첫 수출
- 우리나라 우주항공 스타트업이 자체 위성정보를 해외에 처음으로 수출했다. 한국의 혁신적인 스타트업 텔레픽스(TelePIX)가 폴란드의 위성 개발 스타트업 샛레브(SatRev)와 지구 관측 위성 이미지 데이터를 제공하는 계약을 체결했다고 매체 시전(Cision)이 보도했다. 이는 한국에서 우주항공 분야의 스타트업이 해외에 자체 위성정보를 수출하는 첫 사례로 기록됐다. 이번 사업은 한국항공우주연구원의 중소기업 지원사업을 통해 이뤄진 쾌거로 꼽힌다. 이 계약은 지난 2023년 10월 6일 아제르바이잔 바쿠에서 열린 국제우주대회(IAC)에서 열린 기념식을 통해 공식화됐다. 이 행사에는 한국과 폴란드 양국의 기업 대표자들과 함께 한국 과학기술정보통신부, 한국항공우주연구원, 폴란드 경제개발기술부, 폴란드 우주국의 저명한 인사들이 참석했다. 이 계약의 주요 내용은 텔레픽스가 자체 설계 및 제작한 6U급 초소형 위성인 블루본을 통해 '블루카본' 위성 이미지 데이터를 제공하기로 한 약속이다. 2024년 발사 예정인 이 위성은 3.8m 해상도의 광학 관측 이미지 데이터를 샛레브에 공급할 예정이다. 2019년에 설립된 텔레픽스는 지구 관측을 위한 광학 페이로드와 위성 이미지 데이터 분석 소프트웨어 개발 전문 기업이다. 특히, 텔레픽스는 2024년에 세계 최초로 '블루카본' 관측 서비스를 시작할 계획이다. 이는 해양 생태계 내에서 탄소를 포집하는 중요한 역할을 수행하는 영역에 중점을 둔 혁신적인 서비스로 평가된다. 블루카본 관측은 해양 부유 조류에 초점을 맞추며, 텔레픽스의 첨단 위성 이미지 기반의 초고해상도 정량 탐지 기술을 활용할 전망이다. 권다롱새 텔레픽스의 최고운영책임자는 이 기술이 해양 생태계의 중요한 요소를 모니터링하는 데 중요한 역할을 할 것이라고 언급했다. 그녀는 "텔레픽스는 이산화탄소와 메탄을 포함한 온실가스를 모니터링할 수 있는 차세대 지구 관측 위성 개발에 적극적으로 참여하고 있다"며 "우리의 목표는 2025년까지 이 위성을 완성하는 것이며, 이 위성에서 수집한 다양한 멀티모달 데이터를 융합해 온실가스 관련 기후변화 데이터 분석을 중심으로 한 솔루션의 수출을 논의 중이다"라고 밝혔다. 한국항공우주연구원은 위성 발사 전에 국내 스타트업이 해외에서 수출 계약을 체결한 것이 중요한 성과라고 평가했다.
-
- 산업
-
한국 스타트업 텔레픽스, 폴란드에 위성 이미지 데이터 첫 수출
-
-
에너지 저장·CO₂ 동시 포집하는 이중 목적 배터리 탄생
- 기후 변화 대응을 위해 에너지 저장과 CO₂ 포집이 동시에 가능한 이중 목적 배터리의 개발이 가속화되고 있다고 에너지 전문 매체 오일프라이스(OILPRICE)가 최근 보도했다. 영국 서리 대학교(University of Surrey) 연구진은 리튬-CO₂ 배터리용 촉매 개발을 가속화하는 새로운 시스템을 개발했다고 밝혔다. 이 시스템은 랩온어칩(lab-on-a-chip, '칩 속의 실험'이라는 의미) 기술을 기반으로 하며, 백금, 금, 은, 구리, 철, 니켈 등 다양한 재료를 빠르고 효율적으로 테스트할 수 있다. 리튬-CO₂ 배터리는 리튬과 이산화탄소를 결합하여 작동하는 새로운 유형의 배터리다. 에너지를 저장할 뿐만 아니라 CO₂를 포집할 수 있어 기후 변화 대응에 유망한 기술로 평가받고 있다. 이 연구는 '에너지·환경 과학(Energy & Environmental Science)' 저널에 게재됐다. 연구진이 새로운 시스템을 도입해 다양한 재료를 테스트한 결과, 철과 니켈이 가장 효과적인 촉매로 작용한다는 사실을 확인했다. 앞으로 이 시스템을 활용하여 리튬-CO₂ 배터리의 성능 향상과 상용화 연구에 집중할 예정이다. 이 연구를 주도한 카이 양(Kai Yang) 박사는 "우리는 여러 작업을 동시에 진행할 수 있는 혁신적인 랩온어칩 전기화학 테스트 플랫폼을 개발했고, 이 방법은 기존 방법에 비해 비용과 효율성 면에서 우수하며 조작도 더 용이하다"고 설명했다. 에너지 저장과 CO₂ 포집 기술은 기후 변화에 대응하는 데 있어 필수적이다. 에너지 저장은 재생에너지의 일시적 불안정성을 보완하며, CO₂ 포집은 지구 온난화를 완화하기 위해 대기 중 CO₂ 농도를 감소시키는 데 기여한다. 이 두 기술을 결합한 이중 목적 배터리는 기후 변화 대응의 중심 기술로 각광받고 있다. 리튬-CO₂ 배터리는 기존 배터리보다 에너지 밀도가 높아 오랫동안 사용할 수 있다. 또한, 재생에너지와의 연계 사용이 가능해 환경에 더 친화적이다. 하지만, 이중 목적 배터리는 여전히 에너지 저장 용량이 상대적으로 적고, 비용이 높으며, 안전성 문제도 해결 과제로 남아 있다. 연구자들은 리튬-CO₂ 배터리 성능 향상과 상용화를 위해 노력할 계획이며, 여러 종류의 이중 목적 배터리 개발도 계속 진행 중이다. 이중 목적 배터리는 아직 초기 개발 단계에 있지만, 앞으로 기후 변화에 대한 중요한 대응 수단으로 자리매김할 것으로 예상된다.
-
- 산업
-
에너지 저장·CO₂ 동시 포집하는 이중 목적 배터리 탄생
-
-
이탈리아 해군, 드론으로 지중해 희토류 채굴 나선다
- 이탈리아 해군이 지중해에서 리튬 등 희토류 채굴에 나선다. 유럽 방위 전문매체 디펜스 뉴스는 지난 10월 26일(현지시간) 이탈리아 군 고위관계자를 인용, 이탈리아 해군이 곧 지중해의 해저 희토류 채굴을 검토중이라고 보도했다. 마테오 페레고 디 크렘나고(Matteo Perego di Cremnago) 이탈리아 국방부 차관은 디펜스 뉴스와의 인터뷰에서 "지중해 해저에 희토류가 있다는 것을 알고 있다"며 "바다 밑으로 들어가서 채굴할 수 있다"고 말했다. 희토류 광물과 리튬은 배터리, 휴대폰, 레이저, 위성이나 마이크로칩을 만드는 데 핵심 원료로 서구에서 수요가 매우 높다. 현재 중국이 희토류 매장량이 세계에서 가장 풍부한 것으로 알려졌다. 유럽에서는 육지에서 채굴할 수 있는 희토류를 찾는 작업이 진행 중이지만, 조사에 따르면 바다 밑에도 희토류가 풍부한 지층이 존재한다. 크렘나고 국방부 차관은 해저 희토류 채굴을 보호하고 해저 인터넷 케이블 방어할 수 있을 것으로 예측했다. 그는 이탈리아 해군은 이러한 전략적 노력에 보안을 제공할 수 있는 방법을 계획하기 위해 이미 업계와 논의하고 있다고 덧붙였다. 차관은 "해군은 잠수부, 잠수함, 기뢰 제거기 등을 제공할 수 있으며 무인 기술이 중요할 것"이라고 말했다. 그는 "해저에서 활동 후 수면으로 올라와 태양 에너지로 자율 재충전할 수 있는 드론은 인프라와 해저 채굴을 모니터링할 수 있을 것"이라고 설명했다. 전기자동차 배터리에 필수적이며 전 세계가 가스 연료 차량에서 탈피하는 데 핵심적인 역할을 하는 리튬은 주로 호주와 중국, 남미에서 채굴된다. 유럽은 2050년까지 35배 더 많은 리튬이 필요할 것으로 예측하고 있다. 유럽위원회의 우르줄라 폰 데어 라이엔 위원장은 백색 분말인 리튬이 "곧 석유와 가스보다 훨씬 더 중요해질 것"이라고 말했다. 지난해 발트해에서 발생한 노르드 스트림 가스관 공격 이후 전략적 해저 인프라를 보호해야 할 필요성이 더욱 절실해졌다. 공격 이후 이탈리아 해군은 이탈리아 최대 민간 케이블 공급업체와의 계약의 일환으로 잠수함을 사용해 지중해 해저 인터넷 케이블을 감시하고 방해 행위를 저지하기로 약속했다. 올해 이탈리아는 해저에서 전 세계를 가로지르는 에너지 파이프라인과 인터넷 케이블에 대한 해저 보안을 강화하기 위한 EU의 영구 구조 협력(PESCO) 계획의 새로운 프로젝트를 주도하고 있다. 이탈리아 해군 관계자는 가까운 미래에 파이프라인과 케이블을 순찰하는 해저 해군 드론이 해저에 있는 충전소에 들러 배터리를 충전하고 데이터를 전송하면 몇 달 동안 잠수 상태를 유지할 수 있게 될 것이라고 말했다. 페레고 디 크렘나고 차관은 해저 인프라를 보호하는 해군의 미래 역할은 내년에 이탈리아 라 스페치아(La Spezia)에 문을 열 예정인 새로운 해저 기술 센터에서 기업, 대학, 연구센터, 해군을 한데 모아 연구할 것이라고 말했다. 한편, 환경 단체들은 해저 채굴이 해저의 자연 서식지를 훼손할 것이라고 주장하며 희토류 채굴 중단을 촉구했다. 한국, '탐해3호'로 해저 희토류 탐사 한국도 희토류 등 자원을 탐사하기 위해 한국지질자원연구원에서 '탐해(探海) 3호'를 운용하고 있다. 1868억원에 이르는 대규모 연구개발(R&D) 예산이 투입된 탐해3호는 2023년 7월6일 진수식을 가졌다. 탐해3호는 내년 4월부터 석유가스 등 해저 자원 탐사, 이산화탄소 해저 저장소 선정, 해저지층구조 변화 탐지 등 다양한 임무를 수행할 예정이다. 산업통상자원비가 건조비를 지원했고 지질자원연구원에서 운용하게 된다. 그동안은 탐해 2호가 1997년 취항해 26년여간 물리탐사연구를 수행했다. 지질연이 완성한 '태평양 해저 희토류 지도'에 따르면 태평양 해저 0~5m 기준으로 현재 희토류 매장이 확인된 지역은 159곳에 이른다. 희토류가 비교적 고르게 분포된 남위 30도, 서경 140도 부근 남태평양 1개 지역에서만 약 4860t가량 매장돼 있는 것으로 추정된다. 네오디뮴 등 핵심 5개 희토류의 경제적 가치만 2400억원 가량에 이른다. 연구진은 희토류 매장 지역의 특성을 인공지능(AI)으로 분석해 서태평양 등 매장 가능성이 높은 지역을 추가로 예측하고 있다.
-
- 산업
-
이탈리아 해군, 드론으로 지중해 희토류 채굴 나선다
-
-
NBA 스타 릭 폭스, 바하마에 '탄소 흡수 콘크리트' 주택 건축
- 전 NBA 레이커스의 전설이자 배우인 릭 폭스(54·Rick Fox)가 바하마에 환경친화적인 '탄소 흡수 콘크리트' 주택을 건축했다. 폭스는 총 1000채의 탄소배출 제로 주택을 건설할 계획이다. 미국 경제매체 더 버지(The Verge)는 최근 릭 폭스가 건설한 탄소 흡수 콘크리트 집은 기후 변화 문제 개선에 기여할 것으로 보인다며 이같이 보도했다. 폭스는 지속가능한 건축자재 스타트업 '파르타나(Partanna)'의 CEO이자 공동 창업자다. 벤처캐피털·사모펀드 체루빅 벤처스(Cherubic Ventures)가 파르타나에 투자했다. 체루빅 벤처스는 전 세계 제품 출시 전 단계의 기업에 투자하는 시드 단계 벤처캐피털 회사다. 현재 샌프란시스코, 타이페이, 워털루, 도쿄에 사무실을 두고 있으며, 4억 달러(약 5400억원)의 운용자산(AUM)을 관리하고 있다. 폭스는 바하마에서 탄소중립을 실현하는 이 프로젝트가 성공하면, 현재 대체재인 탄소 흡수 콘크리트를 일반적인 건축 자재로 도입해 건설 산업의 환경오염을 줄일 계획이다. 그는 "나는 헐리우드 경력을 일시 중단하고, 기후 변화에 대응하는 실질적인 해결책을 찾기로 결정했다"고 말했다. 폭스의 주장에 따르면, 콘크리트와 그 주요 성분인 시멘트는 전 세계적인 이산화탄소 배출량의 약 8%를 차지하며, 이는 기후 변화에 큰 영향을 미치고 있다. 폭스는 고향인 바하마에서 겪은 기후 변화의 영향 때문에 이 분야에 뛰어든 것이라고 설명했다. 2019년 허리케인 도리안은 바하마에 큰 피해를 주었으며, 아바코 섬의 주택 75%를 파괴하고 수천 명이 이재민이 되었다. 릭 폭스는 캘리포니아의 건축가 샘 마샬과 함께 과학자들과 협력하여, '파르타나(Partanna)'라는 회사를 공동 창업해, 탄소 집약적인 시멘트를 사용하지 않는 새로운 콘크리트 제조 방법을 개발했다. 파르타나에서 제작한 콘크리트는 전통적인 시멘트 대신 해수 정수 시설에서 얻은 염수와 강철 생산 부산물인 '슬래그'를 기반으로 한다. 이 혼합물은 상온에서도 경화될 수 있어 에너지 소비가 추가로 필요하지 않고, 콘크리트의 바인더 성분이 대기 중의 CO₂를 흡수해서 그 안에 가둔다. 이 콘크리트는 건물이 완공된 후에도 계속해서 CO₂를 흡수할 능력이 있으며, 건물이 철거될 경우에도 흡수된 CO₂를 유지하면서 재사용이 가능하다. 파르타나 측은 이런 유형의 콘크리트와 건물을 '카본 네가티브(carbon negative)'라고 말했다. 예를 들어 약 116m²(약 35평)의 탄소 흡수 콘크리트 건물은 연간 약 5200그루의 성숙한 나무가 흡수하는 양만큼의 CO₂를 흡수할 수 있다고 설명했다. 애리조나 주립 대학의 지속 가능한 공학 및 건축 환경 학교의 드와락 라비쿠마르(Dwarak Ravikumar) 조교수는 파르타나의 폐기물 활용방식 콘크리트에 대해 긍정적인 평가를 내렸다. 그는 "폐기물을 사용하는 것은 좋은 일"이라면서도 "이 기술이 기후에 어떤 전반적인 영향을 미치는지를 정확히 평가하려면, 시스템 전체를 상세하게 분석해야 한다"고 덧붙였다. 라비쿠마르는 파르타나가 탄소 흡수 콘크리트의 환경적 영향과 확장 가능성을 정확히 평가하기 위해 충분한 데이터를 공유해야 한다고 강조했다. 한편 바하마 정부는 파르타나와의 협력을 통해, 내년에 건설 예정인 29채의 주택으로 구성된 커뮤니티 프로젝트로 시작해 총 1000채의 주택을 건설하기로 합의했다. 바하마 나사우에 지어진 첫 번째 주택은 현재 프로토타입 단계로 아직 거주자가 없다. 하지만 앞으로 지어질 주택들은 생애 첫 주택 구매자들을 대상으로 입주자들을 선정할 예정이다. 파르타나의 건축 자재는 사우디아라비아의 홍해 관광 개발에도 사용될 예정으로 알려졌다. 한편, 국내에도 이산화탄소를 흡수할 수 있는 건축 자재를 개발 중인 기업들이 존재한다. 일례로 에코비오는 바다 생물의 껍질에서 추출한 키토산을 활용한 콘크리트를 개발했다. 또 에코콘크리트는 폐플라스틱을 재활용하여 콘크리트를 제작했고, 제이에스콘크리트는 폐석탄재를 재활용한 콘크리트를 개발하고 있다. 유엔은 2030년까지 43%의 탄소배출을 절감한다는 계획을 세웠다. 그러나 현실은 고작 7%의 탄소배출을 줄일 것이라는 전망이다. 그럼에도 기업들이 지속적인 노력을 펼친다면, 건설 분야에서의 온실가스 배출을 줄일 수 있을 뿐만 아니라 기후 변화에 대응하는 데에도 크게 기여할 것으로 예상된다.
-
- 생활경제
-
NBA 스타 릭 폭스, 바하마에 '탄소 흡수 콘크리트' 주택 건축
-
-
포스코·엔지, 호주 필바라에 대규모 그린 수소 프로젝트 착수
- 한국의 철강 제조업체인 포스코와 글로벌 에너지 대기업인 엔지(Engie)가 호주에서 친환경 철강 산업을 조성하기 위해 필바라에서 대규모 친환경 수소 프로젝트를 추진하기로 합의했다. 호주 현지 매체 리뉴이코노미에 따르면 포스코와 엔지는 지난 13일(현지시간) 풍력, 태양열, 전해조, 파이프 라인으로 구성된 그린 수소 프로젝트를 건설하기 위한 타당성 조사를 실시해 포트 헤드랜드에서 친환경 철강을 생산하는 핵심 투입물인 고온 연탄철(HBI)을 공급할 계획이라고 발표했다. '용선철'이라고도 불리는 고온 연탄철(HBI, Hot Briquetted Iron)은 철광석에서 산소를 제거(환원)한 환원철을 조개탄 모양으로 만든 가공품을 말한다. 이번 연구는 풍력과 태양광 발전을 포함한 필바라 지역의 내륙 재생 에너지 부지와 수소 전해조와 대규모 저장 능력, 그리고 포스코의 HBI 공장에 그린 수소를 공급할 수 있는 파이프라인을 조사할 예정이다. 그린 수소는 직접환원철(DRI) 기술과 HBI 생산을 통해 철광석을 환원하는 제재로 활용된다. 이는 친환경 철강 생산의 핵심 요소다. '해면 철(스펀지 철)'이라고도 불리는 직접환원철(DRI, Direct reduced iron)은 철광석 덩어리를 천연가스(수소)나 천연가스에서 생성된 환원가스 등으로 직접 환원시킨 것을 말한다. 이번 연구는 2024년 초에 완료될 예정이다. 앞서 두 회사는 중동 국가인 오만에서 연간 120만 톤 용량의 그린 암모니아를 공급하기 위해 5GW(기가 와트)를 건설하는 프로젝트에 협력하고 있다. 그러나 이 프로젝트의 규모는 아직 공개되지 않았다. 엔지는 이미 서호주 카라타 인근의 야라 비료 공장에 18MW(메가와트)의 태양광과 8MWh(메가와트시) 배터리 저장 시스템으로 지원되는 호주 최대 규모의 수소 전해조 프로젝트 중 하나인 10MW 전해조를 건설 중이다. 이 회사는 필바라에서 훨씬 더 큰 규모의 친환경 재생 에너지와 수소 프로젝트를 진행할 가능성도 크다. 일본 거대 기업인 미츠이 앤 코(Mitusi and Co)와 합작 투자한 엔지 호주&뉴질랜드(Engie Australia & New Zealand)의 리즈 드 바이세리 대표는 그린 수소를 개발하는 것이 중공업의 이산화탄소 배출량을 줄이는 데 도움이 된다고 말했다. 그는 성명에서 "필바라 지역의 기업과 지역사회는 탈탄소화의 기회와 이점을 볼 수 있다"고 말했다. 이어 "또한 이는 새로운 산업 분야에서 더 많은 일자리를 창출하고 장단기적으로 지역 전체의 경제 활동을 촉진할 수 있다"고 덧붙였다. 바이세리 대표는 "호주는 엔지가 수소 사업 성장을 적극적으로 모색하고 있는 시장"이라며 "우리는 이번 연구가 필바라에서 두 번째로 큰 수소 개발 프로젝트를 진행해, '탄소 순 제로' 목표를 달성하는 데 도움이 될 것으로 기대한다"고 덧붙였다. 포스코는 호주에서 친환경 철강 생산에 통합될 수 있는 친환경 수소 산업을 구축하는 것이 목표라고 밝혔다. 조주익 포스코 수소사업팀장은 "포스코 그룹은 호주에서 단순히 수출용 수소를 생산하는 것 이상을 할 계획이다. 수소 생산뿐만 아니라 수소 활용 산업 개발에도 투자해 부가가치를 창출할 것"이라고 말했다. 빌 존스턴 필바라 주 에너지 장관은 성명에서 "현재 철강 제조업이 전 세계 탄소 배출량의 7% 이상을 배출하고 있다. 친환경 철강을 생산하면 서호주가 친환경 산업의 세계적인 선두주자가 될 수 있을 것"이라고 기대했다.
-
- 산업
-
포스코·엔지, 호주 필바라에 대규모 그린 수소 프로젝트 착수
-
-
목성 위성 중 하나의 바다에서 탄소 발견
- 목성의 달 중 하나인 유로파의 깊은 지하 해양에는 생명 유지에 필요한 성분인 탄소가 포함되어 있다는 것이 확인됐다. 제임스 웹 우주 망원경의 관측에 따르면, 유로파의 표면의 이산화탄소 얼음은 약 1만6000m 두께의 얼음 층 아래의 소금물 해양에서 비롯된 것으로 보인다. 영국 매체 더가디안에 따르면 이 연구 결과는 유로파의 지하 해양에 탄소가 존재한다는 것을 확인하고, 생명의 존재 가능성을 시사하는 동시에, 유로파 해양이 태양계 내에서 탐사가 가장 유망한 지역 중 하나라는 견해를 뒷받침한다. 텍사스의 남서부 연구소(Southwest Research Institute)의 지화학자인 크리스토퍼 글린 박사는 "이는 매우 중요한 발견이고, 나는 이로 인해 매우 기쁘다"라고 말했다. 그는 또한 "유로파의 해양에 실제로 생명이 존재하는지 여부는 아직 확실하지 않지만, 이러한 새로운 발견은 그곳에 todaqud이 있을 가능성이 높다는 더 많은 근거를 제공한다. 그러한 환경은 우주생물학적 관점에서 흥미로워 보인다"고 덧붙였다. 지구의 달보다 약간 작은 유로파는 지표면 온도가 -140도씨를 거의 넘지 않고 목성으로부터 오는 복사선을 포함한 극한의 어려움에 직면하는 것으로 알려져 있다. 유로파의 해양 깊이는 약 6만4160km에 이르며, 얼음 표면 아래에서도 약 1만6000m~2만4140m의 깊이에 달한다. 이러한 깊고 넓은 해양 덕분에 유로파는 생명 탐색의 주요 후보지로 떠올랐다. 깊은 해양에서의 생명 존재 가능성은 탄소와 같은 생물학적으로 필수적인 요소의 풍부도와 그 화학적 특성에 연관되어 있다. 이전 연구에서는 유로파의 표면에서 고체 이산화탄소 얼음의 존재를 확인했으나, 이것이 지하 해양에서 나온 것인지, 아니면 운석 충돌을 통해 유로파 표면에 전달된 것인지는 확실하지 않았다. 최근에는 제임스 웹 망원경의 근적외선 관측을 활용하여 유로파 표면의 이산화탄소 분포를 정밀하게 지도화했다. 특히 '카오스 지형'이라 불리는 지역, 즉 얼음 블록이 지질학적 움직임으로 인해 표면으로 밀려나와 생성된 균열과 능선이 특징인 약 1800km2 크기의 타라 레지오(Tara Regio)에서 이산화탄소의 농도가 특히 높게 관측됐다. 나사 제트 추진 연구소(Nasa's Jet Propulsion Laboratory)의 우주생물학자이자 논문의 공동 저자인 케빈 핸드는 이 연구 결과를 "중요하다"고 평가했다. 그는 "우리가 알고 있는 생명체는 이산화탄소를 섭취하고 호흡하는데, 유로파의 해양에서 이산화탄소가 풍부하다는 점은 그곳의 생명 거주 가능성과 잠재적 생물존재에 대한 중요한 단서가 될 수 있다"고 강조했다. 우주생물학에서는 지구의 생명체에게 필요한 '주요 여섯 가지' 원소를 종종 언급하는데, 이 중 탄소, 수소, 산소, 황의 네 가지는 이미 유로파에서 발견됐다. 그러나 황이 유로파의 해양에서 나온 것인지, 아니면 제우스의 다른 위성인 이오(Io)에서 전달된 것인지는 아직 확인되지 않았다. 글린 박사는 "유로파 해양에서 사용 가능한 탄소의 존재는 그곳의 생명 거주 가능성을 높인다"고 지적했다. 그는 "앞으로 제임스 웹 망원경과 내년에 예정된 유로파 클리퍼 미션의 관측 결과를 통해 유로파에서 질소와 같은 생명의 기본 구성 요소가 얼마나 쉽게 접근 가능한지에 대한 추가적인 정보를 얻을 수 있을 것이다"라며 기대감을 드러냈다. 이번 연구 결과는 '사이언스(Science)' 저널에 발표되었고, 이와 함께 탄소 동위원소(원소의 다른 형태)의 비율 분석도 함께 제시되었다. 탄소-12와 탄소-13의 비율은 생명의 흔적을 나타낼 수 있지만, 이번 연구에서는 명확한 결론을 내리지 못했다. 런던 대학교 머러드 우주과학 연구소의 행성과학 부문장 앤드루 코츠 교수는 이 연구를 "중요하며 흥미롭다"고 평가했다. 그는 "우리는 유로파에 이러한 요소들이 존재할 가능성이 크다고 보고 있다"고 말했다.
-
- 산업
-
목성 위성 중 하나의 바다에서 탄소 발견
-
-
모기, 특정 피부 타입 더 많이 문다
- 의사들은 모기가 모든 사람을 고르게 물지 않으며, 일부 사람들이 모기에게 더 자주 물릴 가능성이 있다고 발표했다. 웨일즈 온라인(WalesOnline) 매체의 보도에 따르면, 이와 관련된 연구 결과에서 기후 변화, 피부 타입 등 다양한 요인이 모기의 물림에 영향을 미친다고 나타났다. 따뜻하고 습한 환경은 모기와 같은 해로운 벌레의 번식에 좋은 조건을 제공한다. 피부과 전문의 린지 주브리츠키(Lindsey Zubritsky) 박사는 어떤 사람들은 모기에 더 자주 물리는 반면 잘 물지 않는 사람들이 있는 이유에 대해 설명했다. 그는 "모기는 땀과 체온이 높은 사람이나 암모니아, 요산, 젖산과 같은 물질이 많은 사람에게 더 끌린다. 이런 이유로 운동을 많이 하는 사람들은 모기에게 더 자주 물릴 가능성이 있다"고 말했다. 또 맥주 소비도 모기에게 물릴 가능성을 높이는 요인 중 하나로 지목되었다. 연구 결과, 12온스(약 340g)의 맥주를 마신 사람들은 모기에게 더 자주 물릴 가능성이 있는 것으 밝혀졌다. 린지 박사는 혈액형이 모기에게 물릴 가능성에 영향을 미칠 수 있다고 지적했다. 그는 특히 혈액형 O인 사람들이 모기에게 더 많이 물릴 가능성이 있다고 설명했다. 린지 박사는 또한, "모기는 이산화탄소를 매우 좋아해 숨을 많이 내쉬는 사람, 예를 들어 키가 크거나 비만인 사람들에게 더 끌린다"고도 말했다. 유럽질병예방통제센터(ECDC)의 보고에 따르면, 따뜻하고 습한 기후 조건은 '에데스(Aedes) 모기'가 사람들이 사는 곳에 더 자주 출몰하게 한다. ECDC의 통계에 따르면 에데스 모기가 발견된 유럽 국가의 수가 8개국에서 13개국으로 증가했다. 이 모기들은 뎅기열, 치쿤구냐, 황열병, 지카 바이러스와 같은 심각한 질병을 전파하는 것으로 알려져 있다. 세계 보건 기구(WHO)에 따르면, 2000년에는 약 50만 명이었던 뎅기열 발병자 수가 2019년에는 520만 명으로 크게 증가했다. 최근의 WHO 보고서에 따르면, 현재 전 세계 인구의 절반 이상이 뎅기열 위험에 노출되어 있다는 사실이 밝혀졌다. 이런 통계를 통해 모기에 의한 질병 전파 위험이 계속 증가하고 있음을 알 수 있다. 모기에 물리는 것은 단순히 성가시고 불편한 것뿐만 아니라, 건강에 심각한 위험을 가져올 수도 있다. 그러므로, 집중 방역을 실시하는 등 모기로부터 자신을 보호하고 건강을 지키기 위한 예방 조치를 철저히 실천하는 것이 중요하다.
-
- 생활경제
-
모기, 특정 피부 타입 더 많이 문다
-
-
폐플라스틱 업사이클링 비누 제작 성공
- 버지니아 공대에서 플라스틱 폐기물로 비누를 만드는 기술이 개발됐다. 폐플라스틱을 비누와 세제와 같은 계면활성제로 재활용하는 방법이 개발됐다. 미국 과학 전문매체 사이테크데일리에 따르면 버지니아 공대의 연구원들은 플라스틱을 비누, 세제 등을 만드는 데 사용되는 계면활성제라는 귀중한 화학 물질로 업사이클링하는 새로운 기술을 개발했다. 플라스틱과 비누는 질감, 모양, 사용 방법면에는 공통점이 거의 없다. 하지만 분자 수준에서 이 둘 사이에는 놀라운 연관성이 있다. 오늘날 세계에서 가장 일반적으로 사용되는 플라스틱 중 하나인 폴리에틸렌의 화학 구조는 비누의 화학 전구체로 사용되는 지방산의 화학 구조와 놀랍도록 유사하다. 두 물질 모두 긴 탄소 사슬로 이루어져 있지만 지방산은 사슬 끝에 원자 그룹이 하나 더 있다. 버지니아 공과대학의 류궈량(Guoliang 'Greg' Liu) 화학 부교수는 폴리에틸렌의 구조와 지방산의 유사성에 주목했다. 그는 이러한 유사성을 기반으로 폴리에틸렌을 지방산으로 변환하면, 몇 가지 추가 과정을 통해 비누를 제조할 수 있을 것이라는 아이디어를 장기간 갖고 있었다. 문제는 긴 폴리에틸렌 사슬을 적절한 길이의 여러 사슬로 분리하고, 그 과정을 효율적으로 진행하는 것이었다. 류 교수는 이 방법을 통해 저렴한 플라스틱 폐기물을 가치 있는 제품으로 업사이클링하는 높은 잠재력을 인식했다. 류 교수는 벽난로 앞에서 겨울 저녁을 즐기다가 벽난로에서 나오는 연기가 나무 연소 중 생성되는 작은 입자로 이루어져 있다는 점에 착안했다. 안전과 환경상의 이유로 플라스틱을 벽난로에서 태워서는 안 되지만, 류 교수는 안전한 실험실 환경에서 폴리에틸렌을 태울 수 있다면 어떤 일이 일어날지 궁금해지기 시작했다. 폴리에틸렌이 불완전 연소하면 나무를 태울 때처럼 '연기'가 발생할까. 만약 누군가가 그 연기를 포집한다면, 그 연기는 무엇으로 만들어질까. 화학과 블랙우드 생명과학 주니어 교수 펠로우십의 류 교수는 "장작은 주로 셀룰로오스 같은 폴리머로 구성되어 있다. 연소 시 이 폴리머는 짧은 사슬로 분해되며, 결국 작은 기체 분자로 변한 뒤 이산화탄소로 완전히 산화된다"고 말했다. 그는 또 "합성 폴리에틸렌 분자도 비슷한 방식으로 분해할 수 있는데, 작은 기체 분자로 완전히 분해되기 전 단계에서 그 과정을 멈추면 짧은 사슬의 폴리에틸렌과 유사한 분자를 얻을 수 있다"고 덧붙였다. 연구실의 화학과 박사과정 학생인 젠 쉬(Zhen Xu)와 에릭 무냐네자(Eric Munyaneza)의 도움으로 류 박사는 온도 구배 열분해라는 공정으로 폴리에틸렌을 가열할 수 있는 오븐과 같은 작은 반응기를 만들었다. 아래쪽의 오븐은 폴리머 사슬을 끊을 수 있을 만큼 충분히 높은 온도를 유지하고, 위쪽의 오븐은 더 이상의 분해를 멈출 수 있을 만큼 낮은 온도로 냉각되는 구다. 열분해가 끝난 후 잔여물을 확인하니 '단쇄 폴리에틸렌', 더 정확하게는 왁스로 구성되어 있었다. 류 박사는 이것은 플라스틱을 비누로 업사이클링하는 방법을 개발하는 첫 번째 단계였다고 말했다. 비누화 등 몇 가지 단계를 더 추가한 후, 연구팀은 세계 최초로 플라스틱으로 비누를 만들었다. 이 과정을 계속 진행하기 위해 연구팀은 컴퓨터 모델링, 경제 분석 등의 전문가들의 도움을 받았다. 이들 전문가 중 일부는 버지니아 공대의 고분자 혁신 연구소와의 연계를 통해 팀에 합류했다. 이 그룹은 함께 업사이클링 프로세스를 문서화하고 개선해 과학계와 공유할 준비가 될 때까지 연구를 진행했다. 이 연구는 최근 사이언스 저널에 게재됐다. 논문의 수석 저자인 젠 쉬는 "우리 연구는 새로운 촉매나 복잡한 절차를 사용하지 않고도 플라스틱 업사이클링을 위한 새로운 경로를 보여준다. 이 연구에서 우리는 플라스틱 재활용을 위한 탠덤 전략의 잠재력을 보여주었다"고 말했다. 그는 "앞으로 사람들이 더 창의적인 업사이클링 절차를 개발할 수 있는 계기를 마련할 것"이라고 기대했다. 비록 폴리에틸렌이 이 프로젝트에 영감을 준 플라스틱이었지만, 이 업사이클링 방법은 다른 유형의 플라스틱인 폴리프로필렌에도 작용할 수 있다. 이 두 재료는 제품 포장, 식품용기, 직물 등 일상에서 소비자가 많이 접하는 플라스틱의 대부분을 차지한다. 업사이클링 기술의 또 다른 장점은 플라스틱과 열이라는 매우 간단한 재료만 있으면 가능하다는 점이다. 공정의 후반 단계에서는 왁스 분자를 지방산과 비누로 전환하기 위해 몇 가지 추가 성분이 필요하지만, 플라스틱의 초기 변형은 간단한 반응이다. 따라서 이 방법은 비용 효율성이 높고 환경에 미치는 영향이 비교적 적다. 업사이클링이 대규모로 효과적으로 이루어지려면 최종 제품이 공정 비용을 감당할 수 있을 만큼 가치가 있어야 하며, 다른 재활용 옵션보다 경제적으로 더 매력적이어야 한다. 대규모로 업사이클링이 효과적으로 이루어지려면 최종 제품은 프로세스 비용을 상환하고 대안 재활용 옵션보다 경제적으로 더 유리하게 만들 수 있을 정도로 가치 있어야 한다. 비록 비누가 처음에는 특별히 비싼 상품으로 보이지 않을 수 있지만, 실제로 무게로 비교할 때 플라스틱의 두 배 이상의 가치가 있을 수 있다. 현재 비누와 세제의 평균 가격은 톤 당 약 3550달러(약 478만원)이고 폴리에틸렌은 톤 당 약 1150달러(약 155만원)다. 류 교수는 이 연구는 사용한 플라스틱을 다른 유용한 재료의 생산으로 전환하여 폐기물을 줄일 수 있는 새로운 방법의 토대를 마련했다고 말했다. 그는 시간이 지나면 전 세계의 재활용 시설에서 이 기술을 도입할 수 있기를 기대했다. 젠 쉬는 "플라스틱 오염은 특정 국가의 문제가 아니라 전 세계적인 과제임을 인지해야 한다. 복잡한 촉매나 시약 대신 간단한 공정은 많은 나라에서 더 쉽게 적용될 수 있다"라며, "이 방법이 플라스틱 오염 문제 해결의 좋은 시작이 되길 바란다"고 말했다.
-
- 산업
-
폐플라스틱 업사이클링 비누 제작 성공
-
-
인터넷이 사용하는 전기량은 얼마?
- 영화를 스트리밍하거나 사진을 소셜미디어에 올리거나 메시지를 보내는 일상이 환경에 부담을 준다는 것을 알고 있는 사람은 드물다. 그러나 실제로 대형 데이터 센터들은 이러한 업무를 처리하면서 에너지를 대량으로 소비하고 있다. 디지털화는 종종 건축이나 산업, 교통 분야에서 에너지 절약을 가능하게 함으로써 에너지 전환의 전제 조건으로 이해된다. 그러나 디지털화는 경제와 사회 발전을 촉진하는 동시에 많은 전력을 소비하는 데이터 센터의 급증을 동반한다. 독일 매체 타게샤우(tagesschau)는 보더스텝 연구소(Borderstep Institute)의 최근 연구 결과를 인용해 데이터 센터의 에너지 수요 급증으로 2010년 이후 에너지 소비가 두 배 이상 증가했다고 전했다. 랄프 힌테만(Ralph Hintermann) 보더스텝 혁신 및 지속가능성 연구소(Borderstep Institute for Innovation and Sustainability)의 연구원은 "새로 건설된 데이터 센터 중 일부는 독일의 주요 도시보다 훨씬 더 많은 전기를 필요로 한다"고 설명했다. 이 또한 환경에 영향을 미친다. 사를랜드 대학교에는 복잡한 연구 계산에 사용되는 강력한 컴퓨터가 설치돼 캠퍼스의 IT 인프라 측면에서 전기 소비량이 가장 크다. 이 대학 디지털 책임자인 크리스티안 바그너는 "대부분의 계산이 이뤄지는 고성능 컴퓨터는 우리 데스크톱 컴퓨터보다 약 3배 더 많은 전기를 소비한다"고 말했다. 스트리밍 서비스도 탄소 배출 전기는 복잡한 연구에만 소비되는 것이 아니다. 구글 검색 한 번만으로도 대략 0.15g의 이산화탄소가 배출된다. 또한 다양한 스트리밍 서비스 목록에 올라와 있는 모든 시리즈는 배후에서 작동하는 거대한 데이터 센터로 인해 상당한 양의 이산화탄소가 배출된다. 바그너는 "자동차로 비디오 대여점에 가던 과거와 비교하면, 오늘날은 분명히 더 적은 이산화탄소를 배출하고 있다고 생각한다"고 말했다. 그러나 현실에서 사람들은 저녁에 여러 편의 영화를 연달아 시청하는 경향이 있어 과거보다 더 많은 이산화탄소를 배출하고 있다. 여기서 핵심은 IT 기술이 이산화탄소 배출을 줄여 더 지속 가능하게 하는 것이다. 힌테만은 "하드웨어는 항상 개선되고 있다. 자신의 스마트폰에서도 이를 확인할 수 있다. 스마트폰은 더 강력해지고 충전 시간은 더 짧아졌다"고 말했다. 그는 "그러나 소프트웨어도 업그레이드되어야 한다. 또 친환경 에너지로 데이터 센터를 운영하거나 폐열 활용을 넓혀야 한다"고 덧붙였다. 데이터 센터 폐열 재활용 확대 프랑크푸르트에 있는 구글 데이터 센터의 경우, 이 센터의 폐열을 이용해 1300가구에게 난방용 열을 제공한다. 폐열을 이용하는 또 다른 방법으로는 히트 펌프(heat pump, 냉매의 발열 또는 응축열을 이용해 저온의 열원을 고온으로, 고온의 열원을 저온으로 전달하는 냉난방장치)와 유사한 프로세스 매체(process medium)를 사용하는 방식으로 프로세스 열에서 전기를 생산할 수 있다. 독일 정보통신산업협회(Bitkom)에 따르면 독일의 데이터 센터 용량의 약 3분의 1이 프랑크푸르트에 집중되어 있다. 힌테만은 "데이터 센터 산업의 성장 예측이 정확하다면 이론적으로는 2035년까지 데이터 센터에서 나오는 폐열을 프랑크푸르트의 모든 가구에 공급할 수 있을 것"이라고 전망했다. 그러나 현재는 인프라가 없기 때문에 데이터 센터 폐열 재활용 실현은 갈 길이 멀다. 2027년부터 독일에서 문을 여는 새로운 데이터 센터는 법적으로 기후 중립적으로 운영해야 한다. Bitkom에 따르면 현재 독일에는 약 5만 개의 데이터 센터가 있으며 애플이나 구글과 같은 대형 공급업체는 이미 탄소 중립을 실현하고 있다. 전문가들은 디지털화 때문에 에너지 수요가 증가할 것으로 예상하지만, 이산화탄소 배출을 줄이는 디지털화의 긍정적인 효과가 그 단점을 상쇄할 것으로 본다.
-
- 생활경제
-
인터넷이 사용하는 전기량은 얼마?
-
-
외계 행성 'K2-18b', 생명 징후⋯메탄·이산화탄소 확인
- 미국 항공우주국(NASA)이 제임스웹 우주망원경을 통해 생명체가 존재할 가능성이 큰 행성을 찾아냈다. 소위 우주 강국으로 불리는 미국, 유럽, 인도, 중국, 러시아 그리고 한국과 일본 등은 최근 지구에서는 보이지 않는 달 뒷면을 탐사하기 위해 심혈을 기울이고 있다. 달 자원 탐사뿐만 아니라 자국의 과학기술을 뽐내기 위한 하나의 방편이기도 하다. 여기에 우주망원경도 첨단 기술이 대거 탑재되면서 우주에서 지구와 같은 생명체가 존재할 수 있는 행성을 찾고 있다. 마치 영화 '아바타'에서 행성을 찾는 것을 연상시킨다. 미국 미디어 바이트(The Byte)와 영국 매체 가디언에 따르면, 나사는 제임스웹 우주망원경을 통해 K2-18b에서 메탄과 이산화탄소 등을 발견해 생명체가 존재할 가능성이 있다고 밝혔다. 나사는 최근 제임스웹 우주망원경(JWST)으로 지구에서 120광년 떨어진 사자자리의 행성인 K2-18b의 대기 구성을 관찰한 결과 물로 이뤄진 바다와 해양 세계가 존재할 가능성을 발견했다고 밝혔다. K2-18b는 2015년 나사가 K2 임무에서 케플러 우주망원경을 통해 처음 확인했으며 앞서 지난 2019년 대기에 수증기가 있다는 관측 결과가 발표된 바 있다. 이 행성은 질량이 지구의 약 9배에 달하며, 지구보다는 크고 해왕성보다는 작은 질량을 지칭하는 이른바 '슈퍼지구'에 해당한다. 하이시언 행성 가능성 제임스웹 망원경은 K2-18b에서 지구상에 살아있는 유기체만이 생산할 수 있는 황함유화합물의 일종인 디메틸설파이트(DMS dimethyl sulfide)라 불리는 분자를 발견했다. 연구자들은 이 행성의 대기에서 메탄과 이산화탄소 존재를 확인했다. 이 행성은 바다로 덮여 있고, 수소가 풍부한 대기를 가진 '하이시언 행성'(Hycean planet, 대기에는 수소가 있고 표면에는 물이 있어서 생명체가 존재할 가능성이 있는 행성)일 가능성이 있다. K2-18b는 시스템상 거주 가능 지역에서 약 120광년 떨어진 사자자리의 차가운 왜성인 모항성을 공전한다. 이는 기술적으로 액체 물이 표면에 존재할 수 있을 만큼 별로부터 충분한 복사선을 받는다는 것을 의미한다. 이번 웹 망원경의 관측 결과 K2-18b의 대기에 메탄과 이산화탄소가 풍부하고 암모니아는 부족한 것으로 파악됐다. 나사는 "이는 이 행성의 수소 대기 아래에 물로 이뤄진 바다가 있을 수 있다는 가설을 뒷받침한다"고 설명했다. '미니 해왕성' 추정 외계 행성의 일종 K2-18b는 지구와 해왕성 크기의 중간 규모로, '미니 해왕성(sub-Neptunes)'이라고 불리는 외계 행성의 일종이다. 이 행성들은 우리 태양계의 어떤 행성과도 매우 달라서 행성의 성질에 대해서는 오직 근거에 기인한 추측만 할 수 있다. 영국 카디프 대학교 슈바지트 사카르(Subhajit Sarkar) 교수는 "비록 이런 종류의 행성은 우리 태양계에는 존재하지 않지만, 미니 해왕성은 지금까지 은하계에서 알려진 가장 일반적인 유형의 행성"이라고 말했다. 그는 이어 "현재까지 거주 가능 구역 미니 해왕성의 가장 상세한 스펙트럼을 얻었으며 이를 통해 대기에 존재하는 분자를 밝히는 데 성공했다"고 설명했다. 그러나 K2-18b가 생명체로 가득 차 있다고 결론을 내리기에는 너무 이르다는 지적이다. 연구자들은 더 많은 데이터가 시급한 실정이라고 언급했다. 연구팀 책임자인 영국 케임브리지 대학 니쿠 마두수단(Nikku Madhusudhan) 교수는 BBC를 통해 "만약 (생명체가) 확인된다면 이는 엄청난 일이 될 것이며 올바른 판단을 해야 한다는 책임감을 느낀다"고 말했다. 마두수단 교수는 "가장 궁극적인 목표는 거주 가능한 외계 행성에서 생명체를 식별하는 것이다. 이번 발견은 이 연구에서 하이시언 세계를 더 깊이 이해하기 위한 첫 걸음"이라고 덧붙였다. 다행스럽게도 제임스웹 우주망원경의 MIRI(중적외선 장비) 분광기를 통해 더 많은 데이터가 수집되고 있다. K2-18b 행성에 실제 바다가 존재한다면 수소 대기 아래 외계 생명체 존재도 가능할 것으로 보인다. 한편, K2-18b는 지구 지름의 약 2.6배, 질량의 8.6배의 크기로, 수소가 풍부한 대기 밑에 바다 또는 얼음이 존재할 것으로 예상되는 행성이다. 중력이 지구보다 1.18배며, 0도에서 40도의 온도로 인간이 살기에 적합한 것으로 추정된다. 2019년 9월 BC는 영국 유니버시티 칼라지 런던(UCL)의 연구팀이 이 행성의 대기에서 수증기를 찾아냈다고 보도됐다. 물이 있다는 것은 생명체가 살고 있거나 살 수 있다는 강력한 신호로 풀이된다.
-
- IT/바이오
-
외계 행성 'K2-18b', 생명 징후⋯메탄·이산화탄소 확인