검색
-
-
[퓨처 Eyes(116)] 생명의 설계도는 '책'이 아닌 '입체 퍼즐'이었다⋯인간 게놈 '4D 지도' 완성
- 인간의 몸을 구성하는 세포의 핵 속에는 생명의 모든 정보를 담은 설계도, DNA가 들어있다. 인류는 지난 2003년 '인간 게놈 프로젝트'를 통해 이 설계도의 글자(염기서열)를 모두 읽어내는 데 성공했다. 그러나 과학자들에게는 여전히 풀리지 않는 난제가 있었다. 설계도의 글자는 다 읽었지만, 정작 이 설계도가 좁은 세포 핵 안에서 '어떻게 접혀 있는지', 그 입체적인 형태를 몰랐던 것이다. 마치 가구 조립 설명서의 글자는 읽었으나, 조립된 가구의 완성된 입체 모습은 모르는 것과 같았다. 2025년, 마침내 그 수수께끼가 풀렸다. 노스웨스턴대학교 펑 위에(Feng Yue) 교수가 주도하는 국제 공동 연구팀 '4D 뉴클레옴 프로젝트(4D Nucleome Project)'가 인간 유전자의 3차원 입체 지도를 완성해 국제학술지 '네이처(Nature)' 최신호에 발표했다. 이것은 단순한 지도가 아니다. 시간이 흐름에 따라 역동적으로 변하는 '4D 영상 지도'다. 2m 실을 테니스공에 넣는 '압축의 미학' 우리 몸속 세포 하나에 들어있는 DNA를 일자로 펼치면 그 길이는 약 2m에 달한다. 반면 세포의 핵은 지름이 머리카락 굵기의 수백 분의 일에 불과할 정도로 작다. 2m짜리 긴 끈을 이 좁은 공간에 넣기 위해서는 고도의 '포장 기술'이 필요하다. DNA는 무질서하게 구겨진 것이 아니라, 히스톤 단백질을 감고 코헤신(cohesin) 단백질을 이용해 특정한 규칙에 따라 실타래처럼 감기고, 고리를 만들며 차곡차곡 접혀 있다. 우리가 교과서에서 흔히 보는 막대 모양의 'X자 염색체'는 세포가 분열할 때 이동을 위해 일시적으로 꽉 뭉쳐진 상태일 뿐이다. 평소 세포 속 DNA는 거대한 도서관의 책장처럼, 혹은 아주 복잡하지만 질서 정연한 오리가미(종이접기)처럼 존재한다. 연구팀은 이번에 인간 배아 줄기세포와 포피 섬유아세포를 정밀 분석해, DNA가 꼬이고 접히는 핵심 지점이 14만 곳이 넘는다는 사실을 밝혀냈다. 14만 개의 'DNA 루프'…유전자의 스위치 역할 이번 연구의 핵심 성과는 14만 개에 달하는 '염색질 루프(Chromatin Loops)'의 발견이다. 루프란 끈을 동그랗게 말아 만든 고리를 의미한다. 그렇다면 DNA는 왜 하필 고리 모양으로 접혀 있을까? 이를 이해하기 위해선 '전등 스위치'의 원리를 떠올리면 쉽다. 방의 전등(유전자)을 켜려면 벽에 있는 스위치(조절 부위)를 눌러야 한다. 전등과 스위치는 멀리 떨어져 있지만 벽 속의 전선으로 연결돼 있다. DNA도 마찬가지다. 유전자를 작동시키는 조절 부위는 유전자 본체와 물리적으로 멀리 떨어져 있는 경우가 많다. 이때 DNA가 고리(루프) 모양으로 접히면, 멀리 있던 조절 부위와 유전자가 물리적으로 딱 맞닿게 된다. 즉, "DNA가 접히는 순간 유전자의 스위치가 켜진다"는 것이다. 연구팀은 줄기세포에서 14만 1365개, 섬유아세포에서 14만 6140개의 루프를 확인했다. 이 루프들이 정확한 모양으로 접혀야만 필요한 유전자가 제때 활성화되어 세포가 정상 기능을 수행한다. 반대로 루프가 잘못 접히면 스위치가 고장 난 것처럼 유전자가 작동하지 않거나, 켜지지 말아야 할 유전자가 켜지면서 암이나 각종 유전 질환이 발생하게 된다. AI 닥터, 게놈의 3차원 모양을 예측하다 이번 연구가 독자들의 주목을 끄는 또 다른 이유는 인공지능(AI) 기술의 결합이다. 연구팀은 방대한 실험 데이터를 바탕으로 '딥러닝 모델'을 훈련시켰다. 이를 통해 복잡한 실험 과정 없이도 환자의 DNA 염기서열(글자 정보)만 입력하면, AI가 "이 사람의 DNA는 3차원 공간에서 이런 모양으로 접힐 것"이라고 예측하는 기술을 확보했다. 이 기술의 의학적 가치는 막대하다. 많은 질병이 유전자 글자 자체의 오타(돌연변이)뿐만 아니라, 유전자가 위치한 '공간적 구조의 문제'에서 기인하기 때문이다. 펑 위에 교수는 "질병과 연관된 유전자 변이의 대다수는 단백질을 만들지 않는 '비부호화 영역(Non-coding regions)'에 위치한다"고 지적했다. 과거에는 '정크 DNA'(쓰레기 DNA) 취급을 받았던 이 영역들이 사실은 DNA를 어떻게 접을지 결정하는 중요한 '접기 안내선' 역할을 수행하고 있었음이 드러난 것이다. '구조'를 고쳐 병을 낫게 한다 이번 '3차원 게놈 지도'의 완성은 의학계에 세 가지 중요한 시사점을 던진다. 첫째, 생물학적 관점이 1차원에서 3차원으로 확장됐다. 유전자가 단순히 '있다/없다'를 넘어, '어디에 위치하고 누구와 접촉하는지'가 중요해졌다. 둘째, 원인 불명이었던 질병의 매커니즘이 규명됐다. 백혈병이나 뇌종양 같은 암세포는 DNA 구조가 정상 세포와 달리 엉망으로 꼬여 있다는 사실이 확인됐다. 마지막으로 신약 개발의 패러다임이 바뀐다. 기존 약물이 특정 단백질을 공격하는 방식이었다면, 미래의 치료제는 꼬인 DNA를 풀어주거나 올바르게 접히도록 유도하는 '구조 교정' 방식이 될 전망이다. 펑 교수는 이를 "후생유전학적 억제제(epigenetic inhibitors)"를 이용한 치료라고 설명하며, 암과 발달 장애 치료의 새로운 돌파구가 될 것으로 내다봤다. 2025년, 인류는 생명이라는 거대한 건축물의 설계도를 평면도가 아닌, 살아 움직이는 3D 입체도로 손에 넣게 됐다.
-
- 포커스온
-
[퓨처 Eyes(116)] 생명의 설계도는 '책'이 아닌 '입체 퍼즐'이었다⋯인간 게놈 '4D 지도' 완성
-
-
[ESGC] 남극 토착 곤충에서도 미세플라스틱 검출
- 남극에 서식하는 유일한 토착 곤충이 미세플라스틱에 오염됐다는 다소 충격적인 연구 결과가 나왔다. 미국 켄터키대학교 마틴-개튼 농업·식품·환경대학을 중심으로 한 국제 공동연구팀이 남극의 유일한 토착 곤충이자 지구 최남단 곤충인 벨지카 안타르티카(Belgica antarctica) 유충에서 미세플라스틱 섭취 흔적을 확인했다. 해당 내용에 대해서는 웹사이트 Phys.org, 과학 전문 매체 기즈모도, 인터레스팅엔지니어링 등 다수 외신이 9일(현지시간) 보도했다. 연구 결과는 국제 학술지 '전체 환경 과학(Science of the Total Environment, STOTEN)'에 발표됐다. 야생 상태의 남극 곤충 내부에서 플라스틱 조각이 발견된 것은 이번이 처음이다. 일명 '남극 깔다구'로 불리는 벨지카 안타르티카는 벨기에 남극 탐험대(1897-1899)가 첫 표본을 수집했다. 이 곤충은 남극의 극한 환경에 적응하기 위해 날개가 없다. 성체가 되기까지 2년이 걸린다. 이는 곤충 세계에서는 이례적으로 긴 시간이다. 연구를 주도한 잭 데블린 박사는 2020년 박사 과정 당시 플라스틱 오염을 다룬 다큐멘터리를 접한 뒤 연구 아이디어를 떠올렸다고 밝혔다. 그는 "플라스틱이 전 지구적 환경에서 발견되고 있다면 남극도 예외일 수 없다는 문제의식에서 출발했다"고 설명했다. 극한 환경에 적응한 '폴리-익스트리모파일'…그러나 미세플라스틱 영향은 비켜가지 못해 벨지카 안타르티카는 쌀 한 톨 길이의 작은 파리류로, 남극 반도 일대의 이끼·조류가 자라는 습윤 지대에서 최대 1㎡당 4만 마리 가까이 서식하며 유기물 분해와 토양 영양 순환을 담당하는 핵심 종이다. 극저온, 건조, 고염분, 자외선 등 극한 조건을 버티는 특성으로 '폴리-익스트리모파일(poly-extremophile)'로 불린다. 연구팀은 이 곤충의 유충을 대상으로 10일 동안 다양한 농도의 미세플라스틱 노출 실험을 진행했다. 연구 결과 생존률과 기초 대사량은 변화가 없었으나, 고농도 노출군에서는 지방 축적량 감소가 확인됐다. 탄수화물·단백질 수치는 유지된 반면 에너지 비축 기능에 미세한 영향이 나타난 것이다. 연구진은 "저온 환경에서의 느린 섭식 속도와 복잡한 자연 토양 구조가 플라스틱 섭취량을 제한했을 가능성이 있다"며 장기 노출 연구의 필요성을 제기했다. 야생 개체에서도 미세플라스틱 검출…수량은 적었지만 분명한 '경고 신호' 연구팀은 2023년 남극반도 서부 연안에서 13개 섬, 20개 지점의 유충을 채집해 해부·분석했다. 이탈리아 모데나·레조에밀리아대학교와 엘레트라(Elettra) 싱크로트론 연구센터와의 협업을 통해 지름 4마이크로미터 수준의 미세 입자까지 판별 가능한 화학적 분석을 실시한 결과, 총 40개체 중 2개체에서 미세플라스틱 파편이 확인됐다. 발견된 미세플라스틱 수량은 적었지만 연구진은 이를 "오염이 생태계 내부로 유입되고 있음을 보여주는 초기 신호"라고 평가했다. 데블린 박사는 "지금은 전 지구 평균보다 낮은 오염 수준이 유지되고 있으나, 장기간에 걸친 노출이 유충의 2년 성장주기 전반에 영향을 줄 가능성은 배제할 수 없다"고 말했다. 토착 생태계는 아직 초기 단계 피해 수준…그러나 확산 속도는 '전 지구적' 벨지카 안타르티카는 육상 포식자가 없기 때문에 미세플라스틱이 먹이사슬 상단으로 전이될 가능성은 제한적이다. 그럼에도 연구진은 기후 변화로 인한 온난화·건조화가 지속될 경우, 미세플라스틱 노출이 복합적 스트레스로 작용할 수 있다고 지적했다. 남극 대륙에서 이미 신설 연구기지, 선박 이동, 해류·바람을 통한 장거리 이동 등으로 플라스틱이 유입되고 있다는 기존 연구도 이를 뒷받침한다. 데블린 박사는 "남극이 마지막 남은 청정지대로 여겨졌지만, 이번 사례는 인간 활동의 영향이 사실상 지구 끝자락까지 도달했음을 보여준다"며 "단순하고 비교적 폐쇄적인 남극 생태계는 오염 확산의 조기 감지에 중요한 역할을 할 것"이라고 강조했다. 연구팀은 앞으로 남극 토양에서의 미세플라스틱 농도 변화를 지속적으로 모니터링하고, 벨지카 안타르티카를 포함한 토양 생물들을 대상으로 장기·복합 스트레스 실험을 확대할 계획이다.
-
- ESGC
-
[ESGC] 남극 토착 곤충에서도 미세플라스틱 검출
-
-
[우주의 속삭임(161)] 소행성 베누 시료서 생명 핵심 성분 검출⋯NASA, 태양계 기원 새 단서 확보
- 미국 항공우주국(나사·NASA)은 2일(현지시간) 소행성 베누(Bennu)에서 채취한 시료 분석을 통해 생명 기원의 핵심 단서가 될 수 있는 당류와 미지의 유기 고분자 물질, 그리고 초신성 기원의 성간 먼지가 대량으로 포함돼 있다는 사실을 새롭게 확인했다고 밝혔다. 이번 연구 결과는 국제 학술지 네이처 지오사이언스(Nature Geoscience)와 네이처 아스트로노미(Nature Astronomy)에 3편의 논문으로 동시에 공개됐다. NASA의 소행성 탐사선 오시리스-렉스(OSIRIS-REx)가 지구로 전달한 베누 시료에서는 생명체에 필수적인 당 성분인 리보스(ribose)와 포도당(glucose)이 검출됐다. 일본 도호쿠대 후루카와 요시히로 교수 연구진은 5탄당 리보스와 함께, 외계 물질에서 처음으로 6탄당 포도당이 발견됐다고 밝혔다. 이들 당류는 생명 존재 자체를 의미하지는 않지만, DNA와 RNA, 단백질 형성의 기본 요소가 태양계 전반에 광범위하게 존재했음을 시사하는 결정적 증거로 평가된다. 리보스는 RNA의 핵심 구성 성분으로, 정보 전달과 생화학 반응을 담당하는 분자의 골격을 이룬다. 앞서 DNA와 RNA를 구성하는 5종의 핵염기와 인산염이 이미 베누 시료에서 확인된 가운데, 이번 리보스 검출로 RNA를 형성하는 모든 기본 요소가 베누에 존재했다는 사실이 입증됐다. 연구진은 베누 시료에서 디옥시리보스가 발견되지 않은 점에 주목하며, 초기 태양계 환경에서는 DNA보다 RNA가 생명 기원의 핵심 분자로 작용했을 가능성이 크다는 'RNA 월드(RNA World)' 가설을 뒷받침한다고 설명했다. 또 베누 시료에서는 생명체의 주요 에너지원으로 사용되는 포도당도 확인됐다. 이는 현재의 생명체 에너지 대사에 필수적인 물질이 생명 탄생 이전의 태양계 환경에도 이미 존재했음을 의미한다. 두 번째 논문에서는 베누 시료에서 지금까지 한 번도 보고된 적 없는 '껌(gum)'과 유사한 고분자 유기물질이 발견됐다는 사실이 공개됐다. 미국 NASA 에임스연구센터의 스콧 샌퍼드 박사와 UC버클리의 잭 게인스포스 박사가 주도한 이 연구에 따르면, 해당 물질은 질소와 산소가 풍부한 고분자 구조를 지닌 유기물로, 초기 태양계에서 베누의 모천체가 가열되는 과정에서 형성된 것으로 추정된다. 이 물질은 한때 부드럽고 유연했으나 현재는 굳어진 상태로, 얼음과 광물 입자 표면에 층층이 침착돼 있었다. 연구진은 이 유기물이 생명 발생에 필요한 화학 반응의 전구 물질 역할을 했을 가능성에 주목하고 있다. 샌퍼드 박사는 "이 물질은 태양계 형성 초기, 극히 이른 시점에 일어난 물질 변화의 흔적으로 보인다"며 "말 그대로 '시작의 시작'에 해당하는 사건을 보여준다"고 설명했다. 전자현미경과 X선 분광 분석 결과, 이 물질은 지구의 폴리우레탄과 유사한 화학 구조를 일부 지닌 것으로 나타났다. 다만 일정한 규칙성을 갖는 인공 고분자와 달리, 베누의 유기물은 불규칙적이고 복합적인 결합 구조를 띠는 것으로 확인됐다. 연구진은 이를 '우주 플라스틱(space plastic)'에 비견하며, 향후 추가 분석을 통해 보다 정밀한 화학적 기원을 규명할 계획이다. 세 번째 논문에서는 베누 시료에서 태양계 형성 이전 별에서 생성된 '성간 입자(presolar grains)'가 다량 포함돼 있다는 점이 새롭게 밝혀졌다. NASA 존슨우주센터의 응우옌 앤 박사 연구팀은 베누 시료에서 초신성 폭발로 만들어진 먼지의 비율이 기존에 분석된 어떤 우주 암석보다 최대 6배 이상 높다고 보고했다. 이는 베누의 모천체가 초신성 잔해가 특히 풍부한 원시 원반 영역에서 형성됐음을 시사한다. 동시에 베누의 모천체는 과거 물에 의한 광범위한 변질 작용을 겪었음에도 불구하고, 일부 영역에서는 초기 상태가 거의 보존된 성간 물질과 유기물이 함께 남아 있었던 것으로 확인됐다. 응우옌 박사는 "수용성 변질에 쉽게 파괴되는 성간 규산염과 유기물이 동시에 보존됐다는 점은 매우 이례적"이라며 "베누의 시료가 태양계 형성 당시 물질의 다양성을 고스란히 보여준다"고 강조했다. 이번 연구는 태양계 초기 물질 순환, 생명 기원 물질의 우주적 분포, 그리고 생명 탄생의 조건을 입체적으로 재구성할 수 있는 결정적 단서를 제공했다는 평가를 받는다. NASA는 베누 시료 분석이 향후 다른 천체 탐사와 외계 생명 탐색 연구의 과학적 기준점이 될 것으로 기대하고 있다. 오시리스-렉스 임무는 NASA 고다드우주비행센터가 총괄 관리했으며, 애리조나대가 과학을 주도했다. 우주선 제작과 운용은 록히드마틴이 맡았고, 항법은 고다드와 키네틱스 에어로스페이스가 담당했다. 시료 보관·분석은 NASA 존슨우주센터에서 이뤄지고 있으며, 캐나다우주국(CSA), 일본 우주항공연구개발기구(JAXA) 등 국제 협력도 함께 진행되고 있다.
-
- 포커스온
-
[우주의 속삭임(161)] 소행성 베누 시료서 생명 핵심 성분 검출⋯NASA, 태양계 기원 새 단서 확보
-
-
[먹을까? 말까?(123)] 미국 식탁의 '대두유'가 비만 부른다?⋯체중 증가 연결 고리 첫 규명
- 미국에서 가장 많이 소비되는 식용유인 대두유(콩기름)가 비만을 유발하는 대사 경로와 관련이 있다는 연구 결과가 나왔다. 다만 이번 연구는 동물 실험을 기반으로 한 것으로, 인간에게 동일한 효과가 나타나는지에 대해서는 추가 검증이 필요하다는 점에서 해석에 신중함이 요구된다. 미국 캘리포니아대 리버사이드(UCR) 연구진은 대두유가 풍부하게 포함된 고지방 식단을 섭취한 실험쥐 대부분이 유의미한 체중 증가를 보였으나, 유전자 변형을 통해 특정 간 단백질의 구조가 달라진 쥐들은 같은 식단에서도 비만이 나타나지 않았다고 밝혔다고 UC리버사이드뉴스가 전했다. 이 간 단백질은 체내 지방 대사와 관련된 수백 개 유전자의 발현에 영향을 미치며, 대두유의 주요 성분인 리놀레산(linoleic acid)의 대사 방식에도 변화를 주는 것으로 확인됐다. 해당 연구는 국제 학술지 '지질 연구 저널(Journal of Lipid Research)'에 게재됐다. 연구의 교신저자인 소니아 디올(Sonia Deol) UCR 생의학 연구원은 "이번 발견은 대두유를 많이 섭취하는 식단에서 왜 일부 사람은 더 쉽게 체중이 증가하는지 이해하는 데 중요한 단서를 제공할 수 있다"고 설명했다. UCR 연구진에 따르면 인간의 경우에는 두 가지 형태의 간 단백질(HNF4α)이 존재하는데, 대체형 단백질은 만성 질환, 단식에 따른 대사 스트레스, 알코올성 지방간 등 특정 조건에서 주로 생성되는 것으로 알려져 있다. 연구진은 연령, 성별, 약물 복용, 유전적 차이와 같은 요인들이 이러한 단백질 발현 차이에 영향을 미쳐 대두유의 대사 효과에 대해서도 개인별 민감도가 달라질 수 있다고 분석했다. 이번 연구는 앞서 UCR 연구진이 2015년 발표한 "대두유가 코코넛 오일보다 비만 유발 가능성이 높다"는 연구를 한층 구체화한 것이다. 당시 연구는 현상 수준의 연관성을 제시하는 데 그쳤다면, 이번 연구는 비만과 직접 연결되는 생화학적 경로를 보다 정밀하게 규명했다는 점에서 의미가 크다. 프랜시스 슬래덱(Frances Sladek) UCR 세포생물학 교수는 "문제는 기름 자체나 리놀레산 그 자체가 아니라, 인체 내에서 이 지방이 어떤 물질로 전환되느냐에 있다"고 설명했다. 연구진에 따르면 리놀레산은 체내에서 '옥실리핀(oxylipins)'이라는 분자로 전환되며, 이 물질이 과도하게 생성될 경우 염증 반응과 지방 축적을 촉진하는 것으로 나타났다. 일반 실험쥐는 대두유 기반 고지방 식단에서 옥실리핀 수치가 크게 증가했으나, 유전자 변형 쥐는 동일한 식단에서도 옥실리핀 수치가 현저히 낮게 유지됐고, 간 건강 지표 역시 양호한 상태를 보였다. 특히 이들 쥐에서는 미토콘드리아 기능이 개선된 것으로 확인돼, 체중 증가에 대한 저항력과의 연관성도 추가로 제기됐다. 연구진은 비만을 유발하는 핵심 물질이 리놀레산과 알파-리놀렌산에서 유래한 특정 옥실리핀이라는 점도 규명했다. 다만 유전자 변형 쥐의 경우 저지방 식단에서도 옥실리핀 수치가 높게 나타났음에도 비만으로 이어지지 않았다는 점에서, 옥실리핀만으로 비만을 설명하기는 어렵고 다른 대사 요인들이 함께 작용할 가능성도 제기됐다. 추가 분석 결과, 유전자 변형 쥐에서는 리놀레산을 옥실리핀으로 전환하는 두 개의 주요 효소군의 활성도가 크게 낮은 것으로 나타났다. 이 효소들의 기능은 인간을 포함한 모든 포유류에서 매우 유사한 구조로 보존돼 있으며, 유전적 요인과 식습관, 환경 요인에 따라 활성도에 큰 차이가 발생하는 것으로 알려져 있다. 연구진은 특히 혈액 내 옥실리핀 수치가 아니라 간 내 옥실리핀 수치만이 체중과 직접적인 상관관계를 보였다는 점에 주목했다. 이는 일반적인 혈액 검사만으로는 초기 대사 이상을 충분히 포착하기 어렵다는 의미로 해석된다. 한편, 미국에서 대두유 소비는 지난 100년간 급격히 증가했다. 전체 칼로리 섭취에서 차지하는 비중은 약 2% 수준에서 현재는 10%에 육박한다. 대두유는 식물성 단백질 원천인 대두에서 추출되며 콜레스테롤이 없다는 장점이 있지만, 연구진은 초가공식품을 중심으로 리놀레산이 과잉 섭취되는 구조가 만성 대사 질환을 부추기고 있을 가능성에 주목하고 있다. 실제 이번 연구에서는 콜레스테롤이 없는 대두유를 섭취한 쥐에서 오히려 혈중 콜레스테롤 수치가 상승한 현상도 관찰됐다. 연구팀은 현재 옥실리핀 생성 경로가 체중 증가를 유발하는 정확한 생물학적 메커니즘과, 옥수수유·해바라기유·홍화유처럼 리놀레산 함량이 높은 다른 식용유에서도 유사한 현상이 나타나는지를 추가로 분석 중이다. 디올 연구원은 "대두유 자체가 본질적으로 해로운 것은 아니지만, 현재와 같은 과도한 섭취량은 인체가 진화 과정에서 감당하도록 설계되지 않은 대사 경로를 자극하고 있다"고 말했다. 이번 연구는 아직 인간 대상 임상시험으로 확대될 계획은 없지만, 향후 식품 정책과 영양 지침, 만성질환 예방 전략 수립에 참고 자료로 활용될 가능성은 크다. 슬래덱 교수는 "담배와 암의 연관성이 처음 관찰된 이후 경고 문구가 도입되기까지 100년이 걸렸다"며 "대두유 과잉 섭취와 건강 문제의 연관성도 그만큼 오랜 시간이 걸리지 않기를 바란다"고 말했다.
-
- 생활경제
-
[먹을까? 말까?(123)] 미국 식탁의 '대두유'가 비만 부른다?⋯체중 증가 연결 고리 첫 규명
-
-
트럼프 대통령, AI 경쟁 주도권 확보 '제네시스 미션' 서명
- 도널드 트럼프 미국 대통령이 24일 인공지능(AI) 패권 경쟁에서 주도권을 확보하기 위한 '제네시스 미션(Genesis Mission)' 행정명령에 서명했다. 미국 에너지부 주도로 민간과 학계가 힘을 합쳐 에너지, 과학, 의료 등 각 분야에서 AI를 통한 혁신을 극대화하자는 취지다. 로이터통신 등 외신들에 따르면 백악관은 제네시스 미션을 제2차 세계대전 당시 최고 과학자들이 비밀리에 원자폭탄을 개발한 '맨해튼 프로젝트', 인간을 세계 최초로 달에 보낸 미 항공우주국(NASA)의 '아폴로 우주 프로그램'과 비견되는 대규모 사업이라고 강조했다. 엔비디아, 아마존, 델, HP, AMD 등 미국 대표 정보기술(IT) 기업이 적극 참여하며 이들 빅테크의 기술력과 자본 투자가 사업의 성공 가능성을 높일 것이라는 기대가 나온다. 트럼프 대통령은 이날 "우리가 맞닥뜨린 과학적 도전은 '맨해튼 프로젝트'에 버금가는 국가적 노력이 필요하다. 국립연구소, 대학, 민간기업의 과학자들이 협력해 국가 전체의 연구개발 역량을 극대화하겠다"고 강조했다. 이에 따라 에너지부는 산하 국립연구소들의 슈퍼컴퓨터와 연방정부의 각종 데이터를 민간 과학자와 기술자가 AI 연구용으로 쓸 수 있는 플랫폼을 구축하기로 했다. 크리스 라이트 에너지장관은 "이 사업의 궁극적인 목표는 일자리 창출을 포함해 미 국민의 삶을 개선하는 것"이라며 더 많은 에너지를 공급하고 전력망을 효율화하며 에너지 가격 상승세를 떨어뜨리기를 기대하고 있다고 강조했다. 이번 행정명령은 60일 안에 에너지부가 국가 난제를 최소 20개 이상 선정하도록 규정했다. 바이오테크, 핵융합, 핵분열, 반도체, 양자 컴퓨팅 등이 포함될 것으로 보인다. 민간 주도의 AI 혁신을 위해 정부가 과도하게 간섭하지 말라는 내용도 담겼다. 이에 세계 최대 전자상거래 업체 아마존 또한 연방정부의 AI와 슈퍼컴퓨터 인프라 사업에 최대 500억 달러(약 73조7000억 원)를 투자하기로 했다. 마이클 크라치오스 백악관 과학기술정책실(OSTP) 실장은 "제네시스 미션은 단백질 접힘부터 핵융합 플라스마 역학에 이르기까지 모든 분야의 실험 자동화, 설계, 시뮬레이션 가속화, 예측 모델 생성 등의 기능을 수행할 것"이라며 "과학자들이 가설을 검증하고 진전을 이루는 기간이 수년에서 수일 또는 수 시간으로 단축될 것이고, 현재는 불가능한 돌파구를 마련하게 될 것"이라고 했다.
-
- 경제
-
트럼프 대통령, AI 경쟁 주도권 확보 '제네시스 미션' 서명
-
-
[신소재 신기술(208)] AI, 박테리아 유전체 학습으로 '완전히 새로운 단백질' 창조
- 인공지능(AI)이 박테리아 유전체 데이터를 학습해 지금껏 알려지지 않은 새로운 단백질을 만들어내는 데 성공했다. 미국 스탠퍼드대 연구팀은 박테리아 유전자 배열이 특정 기능을 중심으로 군집한다는 점에 착안해 '에보(Evo)'라는 새로운 AI 게놈 언어모델을 개발했다. 연구 결과는 국제학술지 네이처(Nature) 최신호(2025년 11월 20일자)에 실렸다. 연구팀은 박테리아 유전체 수백만 건을 학습시켜, 염기서열의 규칙성과 유전자 간 상관관계를 인식하도록 했다. 에보는 대형 언어모델(LLM)처럼 특정 염기서열을 입력받으면 그다음 염기를 예측하고, 그 결과를 기반으로 새로운 유전자 조합을 생성한다. 팀은 기존 단백질의 일부분을 입력하자 에보가 나머지 서열을 80~85% 정확도로 완성하는 능력을 확인했다. 더 나아가 완전히 새로운 유전자를 생성하도록 훈련하자, 실험 결과 생성된 단백질 중 일부가 실제 생물학적 기능을 수행했다. 예를 들어 연구팀은 박테리아 독소 유전자를 입력한 뒤 이에 대응하는 항독소 유전자를 생성하도록 에보를 훈련시켰다. 테스트 결과, 생성된 항독소 중 절반이 실제 독성을 완화했고, 두 종류는 박테리아의 생장을 완전히 회복시켰다. 이들 항독소는 기존 단백질과 25% 미만의 유사도를 보여 '자연계에 존재하지 않는 단백질'로 평가됐다. 또한 연구진은 CRISPR 시스템을 억제하는 단백질 생성 실험에서도 17%가 실제 기능을 수행했으며, 일부 단백질은 기존 구조 예측 소프트웨어가 해석하지 못할 정도로 새로운 형태를 보였다. 스탠퍼드대 연구팀은 "Evo는 단백질의 3차원 구조를 고려하지 않고도 유전자 수준에서 기능적 단백질을 만들어낼 수 있음을 보여줬다"며 "이는 진화가 작동하는 핵심 단계인 '핵산 수준'에서 단백질 생성을 재현한 사례"라고 설명했다. 이번 연구는 AI가 단백질 설계뿐 아니라 유전자 진화 과정을 이해하고, 생물학적 창조력을 확장할 수 있는 가능성을 열었다는 점에서 주목받는다. 다만 연구진은 "포유류처럼 복잡한 유전체에는 적용이 쉽지 않다"며 "현재 단계에서는 박테리아 수준의 단순한 유전자 구조에서만 실험적으로 검증됐다"고 밝혔다. 이번 성과는 AI가 단백질 구조 예측(알파폴드) 단계에서 나아가, 생명체의 새로운 진화 가능성을 탐색하는 '유전체 기반 단백질 생성 시대'를 열었다는 평가를 받고 있다.
-
- IT/바이오
-
[신소재 신기술(208)] AI, 박테리아 유전체 학습으로 '완전히 새로운 단백질' 창조
-
-
미국 '닭고기 대체 열풍' 확산⋯물가 부담에 소비 트렌드 급변
- 미국에서 소고기 가격이 급등하자 소비자들이 닭고기로 눈을 돌리고 있다. 경제매체 마켓워치(MarketWatch)는 10일(현지시간) "고물가 압박 속에 닭고기 수요가 3년 만에 최고치를 기록했다"고 보도했다. 미국 최대 육가공업체 타이슨푸드의 닭고기 부문은 회계연도 4분기 조정 영업이익이 4억5700만달러(약 6690억원)로 전년 동기보다 28% 증가했다. 반면 소고기 부문은 9천400만달러(약 1380억원)의 손실을 내며 적자 폭이 확대됐다. 닭고기만이 유일하게 판매량이 늘어난 식품군이었다. 전문가들은 "물가 불안과 소득 양극화가 소비자의 식탁을 바꾸고 있다"며 "닭고기 대체 현상은 당분간 이어질 것"이라고 전망했다. [미니해설] 소득 양극화와 고물가의 그림자…'닭고기 르네상스'가 말하는 미국의 민생 닭고기 판매 급증은 단순한 소비 패턴 변화가 아니라, 고물가와 소득 양극화가 미국 가계의 체감 경제를 어떻게 바꾸고 있는지를 보여주는 단면이다. 미국의 대표 식품기업 타이슨푸드가 공개한 실적에서 닭고기 사업은 분명한 수혜를 입었다. 사료비 하락이 일부 영향을 미쳤지만, 근본적인 원인은 소비자들의 지출 구조 변화에 있다. 소고기·돼지고기 같은 고가 단백질 식품 대신, 단가가 낮고 조리가 간편한 닭고기를 택하는 '실속형 소비'가 뚜렷해졌다. 이런 흐름은 미국 경제의 불균형 구조와도 맞닿아 있다. 타이슨푸드의 크리스티나 램버트 최고성장책임자(CGO)는 "고소득층은 여전히 소비를 늘리고 있지만, 다른 계층은 비식품 부문 예산을 식품으로 돌리고 있다"고 밝혔다. 이는 중저소득층이 이미 '생필품 중심 생존경제'로 이동했음을 시사한다. 정치적으로도 물가 이슈는 미국 사회의 중심 쟁점이 됐다. 트럼프 대통령은 지난 7일 법무부에 육가공업체들의 '소고기 가격 담합' 가능성을 조사하라고 지시했다. "소 가격은 내려갔는데 포장 소고기 가격은 오르고 있다"며 "뭔가 수상하다"고 비판한 것이다. 이는 민주당이 최근 지방선거에서 '생활비' 공세로 성과를 거둔 데 대한 대응으로 풀이된다. 뉴욕시장 선거에서 승리한 민주당의 조란 맘다니 역시 '높은 생활비 완화'를 내세워 저소득층의 지지를 얻었다. 결과적으로 물가는 더 이상 경제 통계의 영역이 아니라, 정치와 민생의 중심 화두로 떠올랐다. 닭고기의 부상은 고물가 시대의 '소비의 방어 전략'이다. 미국민의 식탁에서 닭고기가 늘어난다는 사실은, 물가 안정이 여전히 달성되지 않았음을 반증한다. 트럼프 행정부의 정책 대응과 기업 간 담합 조사 결과가 향후 식품물가의 흐름을 가를 분기점이 될 것으로 보인다.
-
- 경제
-
미국 '닭고기 대체 열풍' 확산⋯물가 부담에 소비 트렌드 급변
-
-
삼성바이오로직스, 글로벌 CMO 시장 점유율 3위⋯론자·우시바이오 이어 상위권 유지
- 삼성바이오로직스가 글로벌 바이오의약품 위탁생산(CMO) 시장에서 스위스 론자, 중국 우시바이오로직스에 이어 3번째로 높은 시장 점유율을 기록한 것으로 나타났다. 한국바이오협회는 27일 미국 시장조사업체 마켓앤마켓 등의 자료를 인용한 보고서에서 지난해 삼성바이오로직스의 CMO 사업 규모가 16억 달러로 집계됐다고 밝혔다. 론자는 42억 달러(점유율 19~21%), 우시는 18억 달러(7~10%) 수준이었다. 삼성바이오로직스는 7~9%를 기록하며 미국 써모피셔사이언티픽(16억 달러), 애브비(11억 달러)와 함께 상위권을 구성했다. 상위 5개 기업의 시장 점유율은 전체의 50~55%로 나타났다. 글로벌 CMO 시장은 올해부터 2030년까지 연평균 8.8% 성장해 341억 달러 규모에 이를 것으로 전망됐다. [미니해설] 삼성바이오로직스, 글로벌 CMO 시장 '3강 체제' 핵심 축 부상 세계 바이오의약품 위탁생산(CMO) 시장이 빠르게 재편되고 있다. 스위스 론자, 중국 우시바이오로직스가 선두권을 형성한 가운데, 삼성바이오로직스가 두 기업을 바짝 뒤쫓으며 '3강 체제'가 뚜렷해지고 있다. 한국바이오협회가 미국 시장조사업체 마켓앤마켓 자료를 분석해 27일 발표한 보고서에 따르면, 지난해 글로벌 CMO 시장 규모는 205억달러를 기록했다. 이 가운데 론자와 우시바이오로직스, 삼성바이오로직스 등 상위 5개 기업이 50~55%를 차지했다. 삼성바이오로직스의 시장 점유율은 7~9%, 생산 규모는 16억달러로 집계됐다. 론자가 42억달러(19~21%)로 압도적 1위, 우시바이오로직스가 18억달러(7~10%)로 2위였다. 삼성바이오로직스는 미국 써모피셔사이언티픽(16억달러), 애브비(11억달러)를 제치고 3위를 확고히 거머쥐었다. 바이오 생산 아웃소싱 확산…삼바에 우호적 환경 CMO 시장 확대의 흐름은 뚜렷하다. 보고서는 올해부터 2030년까지 연평균 8.8% 성장, 341억달러에 달할 것으로 전망했다. 성장 요인은 세 가지로 요약된다. △ 면역항암제 등 바이오의약품 수요 급증, △ 고도화되는 생산 공정과 품질 규제 강화, △ 제약사의 연구개발(R&D) 집중 전략 등이다. 복잡한 단백질 기반 치료제 특성상 시설·기술 투자 부담이 커지면서 외주 생산 의존도가 높아지고 있다는 분석이다. 치료 분야는 '종양학' 중심…차세대 CGT·ADC 급부상 시장 세부 구조를 보면 제조 서비스(94억달러)가 가장 큰 비중을 차지한다. 제형·충전·마감(63억달러), 포장·라벨링(28억달러)이 뒤를 이었다. 분자 유형별로는 단일클론항체가 89억달러, 세포·유전자치료제(CGT)가 51억달러, 항체-약물 접합체(ADC)가 21억달러였다. 특히 CGT와 ADC는 최근 대거 임상에 진입하며 차세대 생산 캐파 경쟁의 핵심 분야로 꼽힌다. 치료 분야에서는 종양학(78억달러)이 압도적 비중을 차지했다. 아시아태평양 성장 속도 가장 빨라…송도 효과 주목 지역별 시장은 북미 75억달러, 유럽 61억달러, 아시아태평양 56억달러(점유율 27.2%) 순이다. 보고서는 "아시아태평양은 글로벌 제약사의 아웃소싱 확대, 파트너십 증가로 가장 높은 성장세를 보일 것"이라고 평가했다. 삼성바이오로직스가 세계 최대 단일 CMO 생산단지(인천 송도)를 운영하는 점은 시장 확대의 직접 수혜 요인으로 지목된다. 현재 4공장(24만L)이 가동 중이며, 5공장(18만L)도 증설이 진행되고 있다. CDMO 전환 가속…경쟁의 본질은 '포트폴리오 다각화' 최근 CMO 업계는 제조에 그치지 않고 공정 개발, 임상 지원, 통합 품질관리까지 수행하는 CDMO(개발·생산 통합 서비스)로 확장하고 있다. 삼성바이오로직스도 미국 샌디에이고 R&D센터 확대, 멀티모달 생산 전략을 통해 CDMO 경쟁력을 강화하고 있다. 전문가들은 "새로운 시장은 CGT와 ADC에서 열린다"며 삼성바이오로직스가 기술 전환 속도를 얼마나 앞당기느냐에 향후 승부가 달렸다고 본다. 한국의 잠재력과 과제 한국의 지난해 CMO 시장 규모는 6억달러. 2030년까지 연평균 8% 성장, 10.2억달러에 이를 것으로 전망된다. 다만 글로벌 대형 제약사의 높은 의존도와 국내 신약 파이프라인 부족, 고급 기술 인력 수급 제약 등의 한계도 분명하다. 즉, 생산기업 성장만으로는 산업 전체의 질적 도약을 기대하기 어렵다는 지적이다. 투자·수주 지형 변화의 중심에 선 삼성 현재 시장은 선두 론자의 기술·규모 경쟁, 중국 우시의 공급망 확장, 삼성의 공격적 증설이 맞부딪히는 3파전 구도로 전개되고 있다. 삼성바이오로직스는 생산능력(규모의 경제), 품질·공정 안정성, 지리적 경쟁력(아시아 공급거점)을 기반으로 글로벌 수주에서 우위를 키우고 있다. 업계 관계자는 "삼성바이오로직스는 시장 확대를 흡수할 수 있는 생산 체력을 갖춘 몇 안 되는 기업"이라며 "다음 싸움은 첨단치료제 포트폴리오 확보가 될 것"이라고 말했다. 결국 CMO 시장은 커지고 있다. 문제는 누가 그 성장을 '가장 많이 가져갈 것인가'다.
-
- IT/바이오
-
삼성바이오로직스, 글로벌 CMO 시장 점유율 3위⋯론자·우시바이오 이어 상위권 유지
-
-
[먹을까? 말까? (119)] "장 스스로 회복한다"⋯MIT, '시스테인'의 재생 비밀 밝혀내
- 장(腸)이 스스로를 치유할 수 있는 능력, 그 열쇠가 한 가지 아미노산에서 발견됐다. 미국 매사추세츠공과대학(MIT) 연구진은 23일(현지시간) 발표한 연구에서, 단백질을 구성하는 아미노산 중 하나인 '시스테인(cysteine)'이 소장 조직의 재생 능력을 강화해 방사선이나 항암치료로 인한 손상 회복을 촉진한다고 밝혔다. 시스테인은 육류, 유제품, 콩류, 견과류 등 단백질이 풍부한 식품에 다량 함유된 필수 아미노산으로, 연구진은 "시스테인 보충제를 통해 장 손상을 줄일 수 있을 가능성"을 제시했다. 이번 연구는 오메르 일마즈(Omer Yilmaz) MIT 줄기세포이니셔티브(Stem Cell Initiative) 소장이 이끄는 팀이 수행했으며, 관련 논문은 국제학술지'네이처(Nature)'에 게재됐다. "장 스스로를 치유하는 아미노산" 연구진은 실험용 쥐를 대상으로 단일 아미노산이 장 줄기세포에 미치는 영향을 분석했다. 그 결과, 20종의 아미노산 중 시스테인이 가장 강력하게 줄기세포와 전구세포(미성숙 세포)의 증식을 촉진하는 것으로 나타났다. 시스테인은 섭취 시 소장에서 코엔자임A(CoA)로 변환된다. 이 물질을 흡수한 CD8 T세포는 활발히 증식하며 IL-22라는 신호 분자를 분비하는데, IL-22는 장 점막 재생과 면역 조절에 핵심적인 역할을 하는 것으로 알려져 있다. 즉, 시스테인이 면역세포를 자극해 손상된 장 조직의 재생을 유도하는 것이다. 이는 방사선 치료나 항암 화학요법으로 인한 장 손상을 줄이는 데 도움이 될 수 있다고 MIT는 설명했다. 이 과정은 주로 소장 점막에서만 활성화되는 것으로 나타났다. 연구진은 "대부분의 단백질이 소장에서 흡수되기 때문에, 시스테인 농도가 가장 먼저 높아지는 곳도 소장"이라고 설명했다. 항암·방사선 치료 후 손상 회복에도 효과 연구팀은 방사선에 노출된 쥐에게 시스테인 풍부한 식단을 제공한 결과, 장 점막이 빠르게 재생되고 염증 반응이 완화되는 현상을 관찰했다. 추가로 항암제 '5-플루오로우라실(5-FU)'을 투여한 실험에서도 유사한 회복 효과가 나타났다. 이는 시스테인이 항암·방사선 치료 부작용을 완화할 수 있는 가능성을 보여주는 대목이다. 오메르 일마즈 교수는 "시스테인이 풍부한 식단이나 보충제를 통해 화학요법 또는 방사선으로 인한 장 손상을 완화할 수 있을 것"이라며 "인공 합성물이 아닌, 자연적인 식이성 화합물로 인체 치유 능력을 활용한다는 점이 의미 있다"고 강조했다. "단일 영양소가 장 재생을 촉진한 첫 사례" 이전에도 칼로리 제한이나 고지방 식단이 장 줄기세포 기능에 영향을 미친다는 연구는 있었다. 하지만 이번 연구는 하나의 특정 영양소가 장의 재생 능력을 직접 향상시킨 첫 사례로 평가받는다. 연구를 주도한 MIT의 박사후 연구원 팡타오 치(Fangtao Chi)는 "고시스테인 식단을 섭취하면 장 내에서 IL-22를 생성하는 T세포 집단이 눈에 띄게 증가했다"며 "이는 우리가 IL-22와 줄기세포 활성 간의 연관성을 다시 이해해야 함을 시사한다"고 말했다. 항산화제에서 '재생 촉진제'로 시스테인은 오랫동안 항산화제의 전구물질(예: 글루타티온)로 알려졌으나, 이번 연구는 그것이 단순한 산화 방지 역할을 넘어 조직 재생을 유도하는 생리학적 기능을 갖고 있음을 입증했다. 연구팀은 현재 시스테인이 피부나 모낭 재생에도 유사한 효과를 보이는지 검증 중이다. 향후 소장뿐 아니라 다른 조직의 회복·노화 방지 메커니즘에도 적용할 수 있는 가능성이 제기된다. 현재까지의 연구는 쥐 실험에 한정돼 있으며, 인체 적용을 위해서는 임상시험을 통한 안전성 검증이 필요하다. 그럼에도 이번 연구는 영양학·면역학·재생의학을 잇는 다학제적 접근의 성과로 주목받는다. MIT 통합암연구소의 에릭 포드 교수는 "이번 연구는 개별 영양소가 줄기세포 운명과 조직 건강에 미치는 구체적 기전을 밝힌 의미 있는 성과"라며 "향후 정밀영양학(Precision Nutrition)과 재생의학의 접목을 가속화할 것"이라고 평가했다. "식탁 위의 치유 과학" 시스테인은 육류, 유제품, 콩류, 견과류 등 단백질이 풍부한 식품에 다량 함유되어 있으며, 체내에서도 메티오닌(methionine)을 원료로 합성된다. 다만 체내 합성 시 장보다 간을 중심으로 분포하기 때문에, 식이를 통한 직접 섭취가 장 건강에 더 효과적일 수 있다고 연구진은 설명했다. 이번 연구는 "음식이 약이 될 수 있다(Food as Medicine)"는 개념을 과학적으로 뒷받침하는 사례로 평가된다. 식단 하나로 장의 재생 능력을 향상시키고, 나아가 치료 후 회복을 돕는 새로운 치료 접근법이 될 수 있다는 점에서 의학적 파급력이 크다.
-
- 생활경제
-
[먹을까? 말까? (119)] "장 스스로 회복한다"⋯MIT, '시스테인'의 재생 비밀 밝혀내
-
-
[퓨처 Eyes(103)] 英·中 공동 연구팀, 식물 뿌리 '굴중성' 비밀 밝혔다
- 식물의 뿌리가 어떻게 중력을 인지하고 땅속 깊이 파고드는지에 대한 오랜 수수께끼가 풀렸다. 영국과 중국 공동 연구진이 식물 호르몬 '옥신(auxin)'이 뿌리의 특정 부위 세포 성장을 억제하는 동시에 다른 부위의 성장은 유지시켜 중력 방향으로 휘어지게 만드는 핵심 분자 메커니즘을 규명했다. 영국 노팅엄 대학교 생명과학부와 중국 상하이 교통대학교 공동 연구팀은 옥신이 'OsILA1'으로 알려진 특정 키나아제(kinase) 효소를 통해 뿌리 아래쪽 세포벽을 단단하게 만들어 성장을 막는다는 사실을 밝혀내고, 관련 연구 결과를 세계적인 학술지 '사이언스 어드밴시스(Science Advances)'에 발표했다. 이번 발견은 식물이 토양 속 장애물을 만나더라도 다시 아래 방향으로 성장할 수 있는 생명력의 비밀을 분자 수준에서 풀어낸 성과로 평가된다. 옥신의 역설, 성장 촉진과 억제를 동시에 식물의 뿌리가 중력 방향을 따라 자라는 현상을 '굴중성(gravitropism)'이라고 한다. 쉽게 말해, 식물이 나침반 없이도 '아래'가 어디인지 알고 그쪽으로 뿌리를 뻗는 능력이다. 굴중성은 식물이 땅속 깊이 뿌리를 내려 안정적으로 몸을 지지하고, 물과 영양분을 효율적으로 흡수하기 위한 필수적인 생존 전략이다. 과학계는 오래전부터 식물 성장 호르몬인 옥신이 굴중성 과정에서 핵심적인 역할을 한다는 사실을 알고 있었다. 중력 자극을 받으면 뿌리 끝에서는 옥신이 아래쪽으로 몰리게 되고, 이로 인해 위쪽과 아래쪽 세포의 성장 속도에 차이가 생겨 뿌리가 휘어진다는 것이 기본 원리였다. 하지만 옥신이 어떻게 뿌리 위쪽 세포의 성장은 촉진하면서, 동시에 아래쪽 세포의 성장은 억제하는지에 대한 구체적인 기작은 오랫동안 베일에 싸여 있었다. 하나의 물질이 어떤 세포에는 '더 자라라'는 명령을 내리면서, 바로 옆 다른 세포에는 '성장을 멈춰라'는 정반대 명령을 내리는 셈이어서 과학자들에게는 큰 수수께끼였다. 세포벽 강화하는 핵심 효소 'OsILA1' 규명 연구팀은 이번 연구를 통해 옥신의 이중적 역할을 명확히 설명했다. 연구 결과에 따르면, 벼(rice)의 뿌리 끝 아래쪽에 축적된 옥신은 OsILA1 키나아제를 활성화하는 신호를 보낸다. 키나아제는 세포 안에서 특정 단백질에 인산(P)을 붙여 그 단백질의 스위치를 켜거나 끄는 역할을 하는 중요한 효소다. 이 신호를 받은 세포는 셀룰로스(cellulose)와 리그닌(lignin) 같은 세포벽 구성 요소의 생합성을 촉진해 기존보다 훨씬 더 견고하고 단단한 세포벽을 만든다. 셀룰로스는 식물 세포벽의 뼈대를 이루는 단단한 섬유소이며, 리그닌은 이 뼈대를 더욱 견고하게 만드는 접착제와 같은 역할을 한다. 이렇게 물리적으로 강화된 세포벽은 세포가 더 이상 길어지는 것(신장)을 막는 족쇄 역할을 한다. 반면, 옥신 농도가 상대적으로 낮은 뿌리 위쪽 세포에서는 이러한 세포벽 강화 과정이 일어나지 않는다. 따라서 위쪽 세포들은 정상적으로 신장하며 계속 자라나는 반면, 아래쪽 세포들은 성장을 멈추게 된다. 이러한 비대칭적인 성장 속도 차이가 결국 뿌리 전체가 아래쪽으로 구부러지게 만드는 힘으로 작용하는 것이다. 연구팀은 유전자를 조작해 OsILA1 효소가 제대로 작동하지 못하는 돌연변이 벼를 만들어 실험했다. 그 결과, 이 벼는 뿌리가 중력에 잘 반응하지 못하고 세포벽도 약해져, OsILA1이 뿌리의 방향을 결정하는 핵심 스위치임을 증명했다. 이번 연구를 공동으로 이끈 노팅엄 대학교 생명과학부의 라훌 보살레 부교수는 "지금까지 옥신이 어떻게 뿌리 아래쪽 세포의 팽창을 억제하는지는 불분명했다"며 "우리 연구는 옥신이 세포벽 생합성을 촉진해 아래쪽 세포벽을 강화함으로써 성장을 막는다는 것을 보여줌으로써 이 오랜 의문을 해결했다. 이 이중 메커니즘은 세포 신장을 촉진하고 억제하는 옥신의 상반돼 보이는 역할을 설명해준다"고 밝혔다. 중력과 가뭄, 환경 신호에 반응하는 뿌리의 지능 이번 성과는 가뭄을 감지하는 호르몬으로 알려진 앱시스산(ABA)이 옥신 수치에 영향을 주어 뿌리의 성장 각도를 조절한다는 연구팀의 선행 연구와도 맥을 같이한다. 두 연구를 종합하면, 식물의 뿌리는 중력, 수분 등 다양한 외부 환경 신호를 호르몬 네트워크를 통해 통합적으로 감지하고, 토양 탐색과 자원 획득을 최적화하는 뿌리 구조를 형성하는 정교한 적응 시스템을 갖추고 있음을 알 수 있다. 보살레 박사는 "우리는 옥신이 뿌리 굴중성에 중요하다는 사실은 이미 알고 있었지만, 오랫동안 옥신의 하위 신호 전달 과정에서 무엇이 작용하는지는 알지 못했다"며 "이번 새로운 연구에서 밝혀낸 것이 바로 그것이며, 이는 뿌리 시스템의 작동 방식을 근본적으로 이해하는 데 중요하다"고 연구의 의의를 강조했다. 기초 과학에서 미래 농업으로…슈퍼 작물 개발 기대 연구팀은 이번 발견이 미래 농업 기술에 중요한 단서를 제공할 것으로 기대한다. 옥신의 작용 원리를 상세히 이해함으로써, 척박하거나 단단한 토양에서도 뿌리를 더 깊고 넓게 뻗을 수 있는 품종을 개발할 길이 열렸기 때문이다. 예를 들어, 토양이 단단한 지역에서는 뿌리가 이를 감지하고 더 강하게 뚫고 나갈 수 있도록 유전자를 조절하거나, 가뭄이 잦은 곳에서는 물을 찾아 더 깊이 파고드는 뿌리 시스템을 갖도록 개량할 수 있다. 궁극적으로 가뭄, 다져진 토양, 영양 부족 환경에 대한 작물의 저항성을 높여 농업 생산성과 지속가능성을 향상시키는 데 기여할 수 있다. 보살레 박사는 "호르몬의 역할을 이렇게 상세하게 이해하면 스트레스에 강하고 토양 속 장애물을 극복할 수 있는 작물을 공학적으로 개발할 가능성이 열린다"고 전망했다. 기후 변화로 인한 환경 스트레스가 심화하는 상황에서, 이러한 기초 연구는 전 세계 식량 생산을 안정적으로 확보하는 데 더욱 중요해질 것이다.
-
- 포커스온
-
[퓨처 Eyes(103)] 英·中 공동 연구팀, 식물 뿌리 '굴중성' 비밀 밝혔다
-
-
[먹을까? 말까?(115)] "단백질 과잉 섭취, 건강에 해로울 수 있다"⋯전문가 경고
- 최근 단백질 열풍이 이어지는 가운데 과도한 단백질 섭취가 오히려 건강을 해칠 수 있다는 전문가의 경고가 나왔다. 호주 스윈번공과대학 영양학과 마거릿 머리(Margaret Murray) 선임 강사는 "단백질은 근육 형성, 효소 및 호르몬 생성, 면역 기능 유지에 필수적이지만 필요 이상 섭취한다고 이득이 커지는 것은 아니다"라며 "과잉 섭취는 체내에 축적돼 여러 문제를 야기할 수 있다"고 지적했다고 사이언스얼럿이 보도했다. 호주 정부가 제정한 건강식 생활 지침에 따르면 단백질은 하루 필요 에너지의 15~25%를 차지하는 것이 적정하다. 성인 남성은 체중 1kg당 0.84g, 여성은 0.75g이 권장 섭취량이다. 즉, 체중 90kg 성인은 하루 76g, 70kg 여성은 53g 정도가 적당하다. 그러나 최근 보충제와 단백질 강화 식품의 확산으로 실제 단백질 섭취량은 권장 기준을 크게 웃도는 경우가 많다. 웨이트 트레이닝 등 근력 운동을 하는 경우 체중 1kg당 단백질 1.6g까지 섭취가 근육 성장에 도움이 된다는 연구가 있으나, 이를 초과 섭취하는 경우 추가 효과가 입증되지 않았다. 머리 강사는 "과도한 단백질은 단순히 배출되지 않고 체지방으로 전환되며, 신장 질환 환자에게는 심각한 부담을 줄 수 있다”고 경고했다. 또한 탄수화물·지방 등 다른 영양소를 충분히 섭취하지 않고 단백질 위주로만 먹는 경우 '단백질 중독(protein poisoning)' 위험도 지적됐다. 이는 초기 탐험가들이 토끼 고기만으로 생존하려다 병에 걸린 사례에서 유래한 '토끼 기아(rabbit starvation)'로도 알려져 있다. 단백질 공급원도 건강에 큰 영향을 미친다. 연구 결과 동물성 단백질의 과다 섭취는 조기 사망 위험과 2형 당뇨병 발병 위험을 높인다. 반면, 식물성 단백질은 암 사말융 감소, 당뇨병 위험 완화, 혈중 콜레스테롤 개선 등 긍정적 효과와 관련이 있다. 머리 강사는 "포화 지방 섭취가 많은 육류 위주의 단백질 섭취는 심혈관질환 등 만성질환 위험을 높이지만, 식물성 단백질은 부족한 식이섬유를 보충하고 장 건강에도 기여한다"고 설명했다. 전문가들은 단백질 섭취량 자체보다는 동물성과 식물성의 균형, 탄수화물 지방 비타민무기질 등 다른 영양소와의 조화가 더 중요하다고 강조한다. 머리 강사는 "단백질을 더 먹는 것이 목표가 아니라, 균형있는 식단을 통해 신체가 원활리 기능할 수 있도록 하는 것이 핵심"이라고 덧붙였다.
-
- 생활경제
-
[먹을까? 말까?(115)] "단백질 과잉 섭취, 건강에 해로울 수 있다"⋯전문가 경고
-
-
[퓨처 Eyes(100)] 中 연구진, 세계 최초 다색 발광 식물 개발⋯'살아있는 램프' 시대 여나
- 스스로 빛을 내는 반딧불이나 심해어처럼 자연의 '생물 발광(Bioluminescence)' 현상은 인류의 상상력을 자극해왔다. 스스로 빛을 내는 식물로 가로등을 대체하고 도시를 밝히는 미래는 공상 과학 영화의 단골 소재였다. 최근 중국 과학자들이 유전자를 조작하는 대신, 빛을 저장하는 특수 입자를 식물에 주입해 세계 최초로 다채로운 색상의 빛을 내게 하는 데 성공하며 이러한 상상이 현실에 한 걸음 더 다가섰다. 최근 학술지 '매터(Matter)'에 발표된 이번 연구는 저렴하고 안전한 방식으로 식물을 '살아있는 램프'로 바꿀 수 있는 새로운 길을 열었다는 평가를 받는다. '유전자 변형' 한계 넘은 발상의 전환 과거 과학계는 식물이 빛을 내도록 유전자 자체를 바꾸는 '유전 공학' 기술에 집중했다. 주로 식물성 플랑크톤 등에서 발견되는 생물 발광 유전자를 식물 DNA에 삽입하는 이 방식은 빛이 희미하고 비용이 많이 들었으며, 조작된 유전자가 자연 생태계로 퍼져나갈 수 있는 '유전자 변이'의 위험성을 안고 있었다. 유전 공학의 대안으로 빛을 내는 입자를 주입하는 '소재 공학' 연구 역시 있었지만, 초기 단계에 머물렀다. 반딧불이의 발광 효소인 '루시페레이스'에서 추출한 나노 입자를 사용한 경우, 빛이 약했을 뿐만 아니라 30분 만에 급격히 어두워지는 뚜렷한 한계를 보였다. 중국 화남농업대학 연구팀은 발상을 전환해 새로운 해법을 찾았다. 바로 야광 장난감이나 안전 표지판 등에 널리 쓰이는 '무기 잔광 입자'다. 이 입자는 햇빛이나 LED 조명 등 외부의 빛 에너지를 흡수해 저장했다가 어두운 곳에서 서서히 방출하는 성질을 가졌다. 연구팀은 이 입자를 식물의 잎에 직접 주입하는 간편한 방식을 고안했다. 이 기술은 복잡한 유전자 조작 없이 10분 남짓한 시간 안에 식물을 발광체로 만들 수 있다. 비용 또한 식물 하나당 10위안(약 2000원)에 불과해 대량 생산과 상용화 가능성을 크게 높였다. 연구를 이끈 슈팅 리우 제1 저자는 "우리는 실험실에서 이미 다루는 재료를 사용해 영화 '아타바'의 비전을 실현하고 싶었다"며 "가로등을 대체하는 빛나는 나무를 상상해 보라"고 말했다. '적혈구 크기' 입자, 다육식물서 최적 해법 찾아 연구의 성공은 적절한 입자 크기를 찾는 것과 이를 효과적으로 흡수할 식물을 발견하는 데 달려있었다. 연구팀은 입자의 최적 크기가 약 7마이크로미터(μm), 즉 사람의 적혈구 하나와 비슷한 너비라는 것을 밝혀냈다. 이보다 작은 나노 입자는 식물 조직 내에서 쉽게 퍼졌지만 빛이 약했고, 더 큰 입자는 빛은 훨씬 밝았지만 크기 탓에 멀리 이동하지 못하는 딜레마가 있었다. 이 난제를 해결해 준 것은 뜻밖에도 다육식물 '에케베리아 메비나'였다. 스킨답서스나 청경채 같은 일반 잎 식물과 달리, 다육식물은 조밀하면서도 균일한 내부 조직 구조를 갖고 있었다. 바로 이 구조가 입자들이 뭉치지 않고 잎 전체로 빠르고 고르게 퍼져나갈 수 있는 이상적인 '통로' 역할을 한 것이다. 리우는 "정말 예상치 못한 결과였다. 입자들이 단 몇 초 만에 확산되었고, 다육식물 잎 전체가 빛났다"고 밝혔다. 이렇게 빛 에너지를 가득 머금은 다육식물은 최대 2시간 가까이 밝은 빛을 유지했다. 다육식물은 책을 읽을 수 있을 만큼의 빛을 냈다. 안전성·다양성 확보…살아있는 '컬러 램프' 구현 안전성 또한 중요한 과제였다. 연구팀은 입자 표면을 '인산염'으로 코팅해 식물 조직 내에서 거부 반응 없이 안정적으로 머무는 '생체 적합성'을 높였다. 실제로 입자를 주입한 식물은 며칠이 지나도 엽록소, 당, 단백질 수치가 정상적으로 유지돼 생명 활동에 아무런 지장이 없는 것으로 확인됐다. 나아가 연구팀은 다양한 종류의 인광체를 섞어 녹색뿐만 아니라 적색, 청색, 청자색 등 여러 색상의 빛을 자유자재로 구현했다. 56개의 다육식물을 벽처럼 배열해 주변의 책을 읽을 수 있을 만큼 밝은 빛을 내는 시연에 성공했으며, 자외선(UV)을 이용해 잎사귀에 원하는 글자나 그림을 일시적으로 새기는 것도 가능함을 보여주었다. 지속가능한 도시의 빛…친환경 건축 청사진 제시 이번 연구는 지속 가능한 도시 설계와 친환경 건축에 새로운 청사진을 제시한다. 식물이 내뿜는 빛은 시간이 지나면 사라지지만, 햇빛을 받으면 얼마든지 재충전된다. 정원이나 산책로, 실내 디자인에 화학 전지나 전력 공급 없이 활용할 수 있는 친환경 조명의 무한한 가능성을 연 셈이다. 다만 연구팀은 해당 물질이 식물에 미치는 장기적인 안전성에 대해서는 계속 연구를 진행 중이라고 밝혔다. 리우는 "완전히 인간이 만든 마이크로 스케일의 재료가 식물의 자연 구조와 이토록 완벽하게 결합할 수 있다는 것이 정말 놀랍다"며 "그들이 통합되는 방식은 거의 마법과 같고, 특별한 종류의 기능성을 창출한다"고 연구의 의의를 설명했다.
-
- 포커스온
-
[퓨처 Eyes(100)] 中 연구진, 세계 최초 다색 발광 식물 개발⋯'살아있는 램프' 시대 여나
-
-
[먹을까? 말까?(113)] 플라스틱 도마, 식탁 위의 보이지 않는 위험⋯미세플라스틱 장내 영향 첫 규명
- 플라스틱 도마에서 발생하는 미세플라스틱이 식품에 유입돼 체내로 들어갈 수 있다는 실험 결과가 나왔다. 중국 난징대학교 환경학과 하이-쥔 간(Hai-Jun Gan) 교수가 이끄는 연구팀은 "플라스틱 도마 표면에서 떨어져 나온 미세 입자가 장내 환경에 변화를 일으킨다"는 연구 결과를 발표했다고 어스닷컴이 보도했다. 해당 논문은 최근 국제 학술지 '인바이런멘털 헬스 퍼스펙티브(Environmental Health Perspectives)'에 게재됐다. 미세플라스틱 입자는 약 0.5cm(0.2인치)보다 작은 플라스틱 조각으로 첨가제와 화학 물질을 함유해 인체에 유해할 수 있다. 12주간의 생쥐 실험…플라스틱별 다른 반응 연구팀은 가정에서 가장 흔히 쓰이는 폴리프로필렌(PP)과 폴리에틸렌(PE) 도마를 이용해 실험을 진행했다. 두 소재의 도마로 음식을 반복적으로 썰어 생쥐의 사료에 섞고, 4주와 12주간 각각 급여하며 체내 반응을 관찰했다. 분석 결과, PP 도마에서 떨어진 입자는 평균 10마이크로미터(㎛), PE는 약 27마이크로미터로 확인됐다. 같은 질량 대비 PP 도마에서 훨씬 더 많은 입자가 발생했다. 12주차에는 사료 1그램당 약 1밀리그램의 미세플라스틱이 포함됐으며, 도마 표면의 손상이 심할수록 입자 방출량은 더 증가했다. 독립 실험실 분석에서도 새 PP 도마를 한 번 절단할 때 100~300개의 미세 플라스틱 입자가 떨어지는 것으로 확인돼, 오래 사용한 도마일수록 위험이 커진다는 점을 뒷받침했다. 염증 반응 vs. 미생물 변화 실험 동물의 반응은 소재에 따라 뚜렷하게 달랐다. PP 도마 입자를 섭취한 쥐는 장 점막의 염증과 장벽 손상 지표가 상승했다. 혈액 내 염증 지표인 지질다당류(LPS)와 C-반응단백질(CRP) 수치가 높아졌고, 장벽을 유지하는 단단결합 단백질의 발현이 감소했다. 반면 PE 도마 입자를 섭취한 쥐에서는 명확한 염증 반응은 나타나지 않았지만, 장내 미생물군 구성의 변화가 두드러졌다. 12주차에 비만세포 혹은 뚱보균이라고 부르는 피르미큐테스(Firmicutes) 비율은 감소하고 데셀포박테로타(Desulfobacterota) 비율이 증가했으며, 대사체 분석에서도 담즙산 관련 화합물의 변동이 관찰됐다. 연구팀은 "입자의 크기, 수, 표면 화학 성질, 첨가제 등 다양한 요인이 체내 반응에 영향을 미쳤다"고 분석했다. 일상에서의 잠재적 노출 플라스틱 도마는 미세플라스틱 노출 경로 중 하나에 불과하다. 실생활 조건을 적용한 분석에 따르면, 폴리에틸렌 도마로는 연간 약 7.4~50.7그램, 폴리프로필렌 도마로는 약 49.5그램의 미세플라스틱이 섭취될 수 있는 것으로 추정됐다. 도마 표면의 칼자국이 많아질수록 입자 방출량도 함께 늘어난다. 이와 함께 최근 연구에선 미세플라스틱이 인체 혈액과 경동맥 플라크에서도 검출됐고, 장기간 추적 연구에서는 심근경색, 뇌졸중, 사망률과의 상관성이 보고됐다. 연구진은 “도마로 인한 직접적인 질병 원인으로 단정할 수는 없지만, 인체 노출이 광범위하고 실제로 체내에서 순환할 수 있다는 점은 분명하다”고 강조했다. 목재 도마는 완벽한 대안 아냐 일부 소비자들은 플라스틱 도마 대신 목재 도마로 교체하지만, 목재 역시 관리가 소홀하면 미생물 오염의 위험이 있다. 칼자국, 수분, 지방이 표면에 남으면 세균 번식이 용이하기 때문이다. 전문가들은 "도마 재질과 관계없이 칼자국이 깊게 패인 도마는 제때 교체하고, 원재료별로 도마를 구분해 사용하는 것이 가장 중요하다"고 조언했다. 세계보건기구(WHO)는 "현재까지의 제한된 근거에 따르면 음용수 내 미세플라스틱이 인체 건강에 미치는 위험은 낮다"고 평가했지만, 이는 음용수에 국한된 내용이다. 식품과 주방 환경에서의 영향은 아직 충분히 규명되지 않았다. 연구진은 "이번 연구는 실제 주방 환경을 재현했다는 점에서 의미가 있다"며 "향후 사람을 대상으로 한 장기 노출 연구와 표준화된 검출 시스템 구축이 필요하다"고 밝혔다. 전문가들은 "오래된 도마는 주기적으로 교체하고, 강한 칼질이나 표면 긁힘을 줄이며, 재료별로 도마를 분리해 사용하는 것이 미세플라스틱 노출을 줄이는 현실적인 방법"이라고 조언했다.
-
- ESGC
-
[먹을까? 말까?(113)] 플라스틱 도마, 식탁 위의 보이지 않는 위험⋯미세플라스틱 장내 영향 첫 규명
-
-
[신소재 신기술(191)] 중국 칭화대, '투명 뇌' 기술 개발⋯정밀 3D 이미징 새 시대 연다
- 중국 칭화대학 연구진이 뇌와 심장을 비롯한 장기를 투명하게 만들어 내부 구조를 정밀하게 관찰할 수 있는 새로운 기술을 개발했다고 홍콩 매체 사우스차이나모닝포스트(SCMP)가 지난 17일(현지시간) 보도했다. 이번 연구는 학술지 셀(Cell)에 게재됐으며, 생체 조직을 원형 그대로 보존하면서도 고해상도 3차원 이미지를 구현할 수 있다는 점에서 주목된다. VIVIT, 조직을 '이온 유리 상태'로 전환 연구진은 이번 기술을 'VIVIT(vitreous ionic-liquid-solvent-based volumetric inspection of trans-scale biostructure)'라고 명명했다. 이는 생체 조직을 ‘이온 유리 상태(ionic glassy state)’로 전환해 조직을 투명화하는 방식이다. 이 과정을 거친 장기는 팽창이나 수축 같은 손상 없이 원래의 형태와 미세 구조를 유지하면서 빛을 투과한다. 이 기술 덕분에 이제 희미한 신호(희귀 단백질이나 미묘한 뉴런 연결 등)도 볼 수 있게 됐다. VIVID 기술은 3D 이미징과 같은 응용 분야에 엄청난 파급력을 미칠 수 있으며, 연구자들은 이제 미세한 규모에서 전체 장기를 더욱 정확하게 매핑할 수 있게 됐다고 인터레스팅엔지니어링은 평가했다. 특히 VIVIT 기법은 기존의 '조직 투명화(optical clearing)' 방식이 갖고 있던 문제-심각한 조직 변형, 동결·해동 과정에서의 손상-을 극복했다. VIVIT 처리된 조직은 저온에서 장기간 저장이 가능하며, 얼음 결정이 생기지 않고 유리 상태로 굳어 안정성이 높다. 형광 신호 강화, 미세 신경망까지 포착 이 기술은 형광 염색 효과를 2~30배 증폭시켜 희귀 단백질이나 세포 간 미세 연결까지 뚜렷하게 드러낸다. 연구진은 이를 활용해 생쥐의 시상(thalamus) 신경세포 간 연결망을 3차원으로 정밀하게 규명했으며, 인간 뇌 조직에서도 개별 신경세포의 미세 연결성을 분석하는 데 성공했다. 칭화대는 공식 성명을 통해 이번 기술을 "내부 구조를 보여주는 X선 시야와 같은 해부학적 투명성, 그리고 샘플 준비·형광 염색·3D 재구성을 관리하는 내비게이션 엔진을 동시에 갖춘 혁신적 솔루션"이라고 설명했다. 의학·생명과학 전반에 파급력 기대 전문가들은 VIVIT 기술이 뇌과학, 심혈관 연구, 정밀 의학 등 다양한 분야에 응용될 수 있을 것으로 보고 있다. 특히 뇌 신경망의 3차원 지도 제작, 퇴행성 뇌질환 원인 규명, 신약 개발 등에서 큰 진전을 이끌 수 있다는 평가다. 이번 성과는 중국이 생명과학과 의료기기 분야에서 세계적 경쟁력을 높이고 있음을 보여주는 사례로도 주목된다. 연구팀은 "향후 비장, 간, 심장 등 다양한 장기에 적용해 인체 전반의 미세 구조를 규명하는 데 기여하겠다"고 밝혔다.
-
- IT/바이오
-
[신소재 신기술(191)] 중국 칭화대, '투명 뇌' 기술 개발⋯정밀 3D 이미징 새 시대 연다
-
-
[퓨처 Eyes(97)] 달에서 산다⋯中·캐나다·獨, '집 짓고 먹고 숨 쉬는' 월면 기지 경쟁 본격화
- 인류의 달 복귀 계획이 구체화하면서, 이제 인류의 시선은 달에 '가는 것'을 넘어 '사는 것'으로 향하고 있다. 지구에서 모든 것을 가져갈 수 없는 만큼, 달 현지에서 의식주를 해결하는 자급자족 기술은 영구 기지 건설의 성패를 가를 핵심 과제다. 최근 중국, 캐나다, 독일이 각각 건설, 식량, 생명 유지 분야에서 획기적인 기술을 선보이며, 공상과학 소설 같던 '월면 도시'의 꿈을 현실로 앞당기고 있다. 中, 태양열 3D 프린터로 '달 기지 외벽' 짓는다 달 기지를 위협하는 가장 큰 적은 진공 상태의 우주와 운석, 그리고 극심한 온도 변화다. 중국 허페이의 심우주탐사연구소(DSEL)가 이 문제의 해법으로 '월면토 벽돌' 기술을 제시했다. 달 표면을 덮고 있는 곱고 날카로운 흙먼지인 달의 표토(lunar regolith, 월면토)를 녹여 단단한 벽돌을 만드는 기술이다. NASA에 따르면 달의 표면층은 조각난 날카로운 암석 물질로 이루어져 있다. 지구 토양은 유기물로 구성되어 있지만, 달의 표토는 운석의 충돌과 태양 및 별에서 오는 전하를 띤 입자의 영향으로 형성된다. 지구의 토양은 바람과 물에 노출되어 입자의 가장자리가 닳아지지만, 달 표토의 암석 물질은 날카로운 상태를 유지하며 매우 뾰족한 파열 표면을 가지고 있다. 이로 인해 표토는 우주복과 장비를 빠르게 닳게 만들고 우주비행사 건강에 해로울 수 있는 등 잠재적으로 위험할 수 있다. 연구팀이 개발한 장비는 3D 프린터와 원리가 같지만, 열원으로 태양 에너지를 사용한다. 돋보기처럼 빛을 한 점으로 모으는 오목한 거울(포물선형 반사경)로 태양빛을 모으고, 이를 빛이 다니는 길인 가느다란 유리 섬유 묶음(광섬유 다발)을 통해 한 점에 집중시킨다. 이때 초점의 온도는 1,300℃ 이상으로 치솟아, 달의 표토(월면토)를 마치 용암처럼 녹여 원하는 모양의 벽돌로 찍어낼 수 있다. 이 기술의 가장 큰 장점은 지구에서 어떤 첨가물도 가져갈 필요 없이 오직 달에 있는 흙과 태양 빛만으로 건설 자재를 무한정 생산할 수 있다는 점이다. 연구팀은 지구의 현무암으로 만든 모의 월면토를 이용해 평면, 곡면 등 다양한 형태의 구조물 제작에 성공하며 기술의 가능성을 입증했다. 양훙룬 DSEL 수석 엔지니어는 "이 벽돌은 사람이 숨 쉴 수 있도록 내부 공기압을 유지하는 생활 공간(가압 모듈)을 감싸는 튼튼한 보호 외피 역할을 할 것"이라며 "강력한 우주 방사선, 시속 수만 km로 날아드는 미세 운석, 낮 120℃와 밤 영하 130℃를 오가는 극한의 온도 변화로부터 우주비행사와 내부 시설을 안전하게 지켜줄 것"이라고 설명했다. 현재 이 벽돌 시제품은 2024년 11월 중국 톈궁 우주정거장으로 보내져 3년간의 혹독한 우주 환경 내구성 시험을 거치고 있다. 연구팀의 최종 목표는 로봇을 투입해 이 모든 건설 과정을 사람의 개입 없이 자동으로 수행하는 것이다. 캐나다, '겨울잠 자는 온실'에서 곡물을 키운다 건물을 지었다면 다음은 식량이다. 크리스티안 살라버거 캐나다넨시스 최고경영자(CEO)는 "가루 주스나 동결건조 아이스크림만으로는 진정한 우주 탐사 임무를 수행할 수 없다"며 신선 식품의 중요성을 강조했다. 그의 회사 캐나다넨시스 에어로스페이스는 캐나다 구엘프대, 맥길대와 손잡고 극한의 달 환경에서 신선한 작물을 재배하는 '월면 온실' 기술을 개발하고 있다. 달의 밤은 지구 시간으로 2주나 계속되고, 이때 온도는 급강하하며 햇빛도 전혀 없다. 연구팀은 이 문제를 해결하기 위해 식물이 마치 겨울잠을 자듯 활동을 최소화하는 '준동면(quasi-hibernation)' 전략을 고안했다. 온실은 햇빛이 없는 밤 동안 에너지 소비를 극도로 줄여 버티다가, 다시 해가 뜨면 정상적으로 성장을 이어간다. 2024년 말부터 시작된 실험에서 연구팀은 지구 대기압의 절반에 불과한 저압 환경과 기나긴 어둠 속에서도 보리와 귀리를 성공적으로 생존시켰다. 또한 흙 없이 영양분을 녹인 물을 순환시켜 식물을 키우는 수경재배 방식의 단점도 극복했다. 물을 공유하기 때문에 병원균 하나가 전체 시스템을 오염시킬 수 있는데, 전기를 이용해 물속 유해균을 없애는 소독 기술을 적용해 문제를 해결했다. 이 프로젝트는 NASA가 주도하는 유인 달 탐사 계획 '아르테미스'와 연계되어, 2027년으로 예정된 유인 달 착륙 임무의 성공을 위한 핵심 과제로 추진되고 있다. 연구를 이끄는 겔프 대학교의 마이크 딕슨 교수는 "인류는 오랜 역사 속에서 언제나 술을 만들어왔다"며 "달에서도 좋은 술을 맛볼 수 있도록 보리를 재배하는 것이 오랜 목표"라는 유쾌한 포부를 밝히기도 했다. 독일, 조류(Algae)로 식량과 산소를 동시에 잡는다 독일 뮌헨공과대학교(TUM) 연구팀은 한 걸음 더 나아가 식량과 산소를 동시에 생산하는 기술을 제안했다. 해답은 바로 미세조류(algae)다. 연구팀이 개발 중인 '광생물반응기(PBR)'는 빛(光)을 이용해 미세조류 같은 생물(生物)을 키워 유용한 물질을 얻는 장치다. 우주비행사가 내뿜는 이산화탄소와 물을 공급하면, 조류가 광합성을 통해 신선한 산소를 만들어내고, 빠르게 증식한 조류는 단백질이 풍부한 식량(바이오매스)이 된다. 연구팀은 가느다란 관을 이용하는 '튜블러' 방식과 넓은 판을 쓰는 '평판형' 방식의 두 가지 PBR 설계를 비교 분석했다. 평판형이 생산 효율은 더 높지만, 유지보수가 더 까다로운 것으로 나타났다. 이 기술의 가장 큰 매력은 비용 절감 효과다. 지구에서 1kg의 화물을 달로 보내는 데 약 10만 달러(약 1억 3000만 원)가 드는 것을 감안할 때, PBR 구조물 대부분을 월면토로 만들면 시스템당 수백만 달러, 튜블러 방식의 경우 최대 5000만 달러(약 650억 원)까지 절약할 수 있다. 물론 아직 넘어야 할 산은 많다. PBR 가동에 필요한 빛을 태양에서 직접 얻으려면 투명한 유리가 필요한데, 월면토로 완벽하게 투명한 유리를 만드는 기술은 아직 초기 연구 단계다. 내부 LED 조명을 쓰자니 전력 소모와 부품 조달이 문제다. 플라스틱이나 전자부품, 그리고 생명 활동에 필수적인 탄소(C)와 질소(N) 같은 원소들도 달에는 매우 희귀하다. 연구팀은 우주비행사의 소변이나 생활 하수를 정화해 희소 원소를 재활용하는 '완전 순환(폐쇄 루프)' 방식을 현실적인 대안으로 제시했다. 미래의 달 기지, '통합 시스템'으로 진화한다 중국, 캐나다, 독일이 개발 중인 기술들은 각각 독립적으로도 의미가 크지만, 서로 결합될 때 진정한 시너지를 발휘한다. 미래의 달 기지는 중국의 벽돌로 지은 튼튼한 외피가 우주의 위협을 막아주고, 그 안에서 캐나다의 온실이 신선한 채소를, 독일의 광생물반응기가 식량과 산소를 공급하는 '통합 아키텍처' 형태가 될 전망이다. 여기에 태양광 발전과 에너지 저장 시스템, 물과 폐기물을 100% 재활용하는 기술이 더해지면, 지구의 보급에 의존하지 않는 지속 가능한 영구 기지 운영이 가능해진다. 현재 각국의 기술들은 초기 실험 단계에 머물러 있지만, '건설-식량-생명 유지'로 이어지는 이 기술 삼각편대는 인류가 달에서 스스로 짓고, 먹고, 숨 쉬는 시대를 앞당기는 핵심 동력이 되고 있다.
-
- 포커스온
-
[퓨처 Eyes(97)] 달에서 산다⋯中·캐나다·獨, '집 짓고 먹고 숨 쉬는' 월면 기지 경쟁 본격화
-
-
[먹을까? 말까? (111)] 최소 가공 식단, '건강한 초가공식'보다 체중 감량 효과 2배 높아
- 영국에서 진행된 대규모 임상시험에서, 가공을 최소화한 식단을 섭취한 참가자들이 '건강 기준에 부합하는 초가공식'을 섭취한 참가자들보다 두 배 많은 체중을 감량한 것으로 나타났다고 CNN이 5일(현지시간) 보도했다. 이 연구는 세계적으로 드문 초가공식품 관련 통제 임상시험을 진행해온 미국 국립보건원(NIH) 전임 수석연구원 케빈 홀 박사를 포함한 국제 공동 연구진에 의해 수행됐으며, 8월 5일 국제 학술지 '네이처 메디신(Nature Medicine)'에 게재됐다. 연구는 총 55명의 과체중 또는 비만 성인 영국인을 대상으로 8주 단위 식단을 제공하는 방식으로 이뤄졌다. 참가자들은 먼저 최소 가공 식단 또는 초가공 식단 중 하나를 섭취한 뒤, 휴식기를 거쳐 다른 식단으로 교체해 다시 8주간 섭취하는 방식으로 진행됐다. 양쪽 식단 모두 영국 정부의 공식 영양지침인 '잇웰 가이드(Eatwell Guide)'를 준수하도록 구성됐으며, 초가공 식단 역시 섬유소는 늘리고 당·지방·나트륨은 줄이는 등 '건강하게 설계된' 초가공식으로 제공됐다. 초가공식도 '건강하게'설계했지만⋯체중 감량 효과 여전히 낮아 연구에 따르면, 최소 가공 식단을 섭취한 그룹은 평균적으로 하루 섭취 열량을 290kcal 줄였고, 2%의 체중 감량과 일부 체지방 감소 효과를 얻었다. 반면 초가공 식단을 섭취한 그룹도 의외로 하루 평균 120kcal 섭취량이 줄어들며 소폭 체중 감소가 나타났지만, 감량 폭은 전자의 절반 수준이었다. 이번 연구의 제1저자인 유니버시티칼리지런던(UCL) 비만연구소의 새뮤얼 디켄 연구원은 "8주 동안 체중의 2%가 줄어드는 것은 작아 보일 수 있지만, 이는 참가자들이 식사량을 조절하지 않은 상태에서 나타난 결과"라며 "이를 1년간 확대하면 남성은 13%, 여성은 9%의 체중 감량이 가능할 것으로 보인다"고 설명했다. 특히 참가자들은 하루 4000kcal 상당의 식사를 자유롭게 섭취하도록 했으며, 각 식단군 모두 '비슷한 칼로리와 영양 성분'을 갖도록 조정된 점에서 연구 설계가 견고 했다는 평가를 받는다. 식품 가공도가 건강에 미치는 영향 연구팀은 초가공 식단도 가공식품 중 비교적'건강한 제품'을 선정해 구성했다. 과일·견과류·단백질바, 플랜트 밀크, 샌드위치, 마시는 요거트 등으로 이뤄졌으며, 일반적으로 초가공 식품이 비판받는 과도한 열량, 설탕, 지방, 염분을 상당 부분 조절했다. 스탠퍼드대학교 예방의학센터 크리스터퍼 가드너 교수는 "이 연구는 건강하게 설계된 초가공식단 조차도 최소 가공 식단보다 체중 감량 효과가 떨어질 수있다는 점을 보여준다"며 "참가자 대부분이 연구 이전부터 초가공식 위주의 식단에 익숙했덤 점을 고려하면, 오히려 실험용 식단이 개선 식단이었을수도 있다"고 설명했다. 그는 "사람들은 초가공식 중에서도 가장 좋지 않은 음식을 선택하는 경향이 있으며, 문제는 가공 그 자체보다 어떤 제품을 고르느냐에 있다"고 지적했다. 실제 맛 선호도와 체중 변화 간 상관관계도 제기돼 연구의 편집자 논평을 맡은 뉴욕대학교 마리온 네슬 교수는 "참가자들이 최소 가공 식단을 기존 식사보다 덜 맛있다고 평가했으며, 오히려 초가공 식단 쪽을 더 선호하는 경향이 있었다"며 "맛 선호도와 체중 변화 사이에 일정한 상관관계가 존재할 가능성도 있다"고 말했다. 연구 결과에서 초가공 식단군은 뜻밖에도 LDL(저밀도지단백) 콜레스테롤 수치가 더 큰 폭으로 감소했는데, 이는 가공 방식 자체보다 식단 구성 요소가 건강에 더 중요한 영향을 줄 수 있음을 시사한다는 해석도 나왔다. 옥스퍼드대 다이어트·비만행동과학과 디미트리오스 쿠토우키디스 교수는 "이러한 LDL 수치 감소는 기존 상식과 다소 어긋나는 결과지만, 식품의 성분 구성이 가공 여부보다 중요한 변수일 수 있음을 보여주는 대목"이라며 "추가 연구가 필요하다"고 설명했다. '덜 가공된 건강식'이 여전히 우위…단, 식품 선택이 핵심 연구를 이끈 홀 박사는 "초가공 식단의 열량 밀도를 낮추고 과도한 기호성을 줄이면 일부 부작용은 상쇄할 수 있지만, 그럼에도 불구하고 가공도가 낮은 식품의 체중 감량 효과가 더 분명했다"고 밝혔다. 전문가들은 단순히 '가공 여부'보다는, 영양 기준을 충족하는 건강한 식품 선택이 핵심이라고 조언했다. 염분, 당, 포화지방이 적고 식이섬유가 풍부한 식품을 선택하고, 첨가물이 지나치게 많은 제품은 피하는 것이 건강한 식단의 기본이라는 것이다. 초가공식품이 일상 식탁에서 차지하는 비중이 한국을 포함한 선진국 전반에서 증가하고 있는 상황에서, 이번 연구는 식단 선택의 방향성을 제시하는 중요한 임상 근거로 주목된다.
-
- 생활경제
-
[먹을까? 말까? (111)] 최소 가공 식단, '건강한 초가공식'보다 체중 감량 효과 2배 높아
-
-
[먹을까? 말까?(108)] 계란 섭취, 알츠하이머 예방 효과 확인⋯"주 2회 섭취로 발병 위험 40% 감소"
- 미국 보스턴·워싱턴DC·시카고 공동 연구진이 계란 속 주요 영양소인 콜린(choline)이 알츠하이머성 치매 발병 위험을 최대 40% 낮출 수 있다는 연구 결과를 발표했다. 14일(현지시간) 데일리메일에 따르면 이번 연구는 65세 이상 고령층을 중심으로, 계란 섭취 빈도와 인지 기능, 뇌 건강 지표 사이의 상관관계를 분석해 얻은 결론이다. 연구진은 치매 진단 이력이 없는 1,024명을 대상으로 식습관 조사와 인지 기능 추적 검사를 약 7년에 걸쳐 진행했으며, 조사 대상 중 578명은 사후 뇌 조직 기증을 통해 병리학적 분석에도 참여했다. 연구 참여자들은 계란 섭취 빈도에 따라 ▲월 1회 미만 ▲월 1~3회 ▲주 1회 ▲주 2회 이상 등 네 집단으로 나뉘었고, 연구 결과 주 1회 이상 계란을 섭취한 그룹은 월 1회 미만 섭취한 그룹에 비해 알츠하이머 치매 발병 위험이 절반 수준으로 낮게 나타났다. 연구에서 주목한 성분은 콜린(choline)으로, 이는 간 기능, 신경계 건강, 근육 움직임, 뇌세포 구조 유지 및 신경전달물질 생성에 필수적인 영양소다. 특히 콜린은 기억력과 학습 능력을 유지하는 데 핵심 역할을 하는 아세틸콜린(acetylcholine)의 전구체이기도 하다. 연구팀은 "콜린이 뇌세포 구조를 안정시키고, 신경세포 간 신호 전달을 돕는 동시에, 알츠하이머의 주요 발병 원인인 베타 아밀로이드 플라크와 타우 단백질 얽힘(tangle)의 생성을 억제할 수 있다"고 설명했다. 알츠하이머병은 주로 단백질 축적물(플라크와 얽힘)이 신경세포 기능을 차단하고 세포를 사멸시키는 과정으로 진행되며, 기억력 저하, 언어 능력 저하, 신체 기능 상실 등의 증상을 유발한다. 현재 미국에서는 65세 이상 인구 중 약 720만 명이 알츠하이머를 앓고 있으며, 연간 10만 명 이상이 이 병으로 사망한다. 알츠하이머협회는 2050년까지 환자 수가 1300만 명에 이를 것으로 전망하고 있다. 이번 연구 결과는 알츠하이머의 예방 가능성을 제시한 희소 사례로, 특히 식이 조절을 통해 위험 요인을 완화할 수 있다는 점에서 의료계의 관심을 모으고 있다. 다만 이번 연구는 관찰적 분석에 기반한 것으로, 인과 관계를 입증하기 위해서는 향후 대규모 무작위 대조군 연구가 필요하다는 것이 전문가들의 견해다. 콜린은 인체가 소량 자체 합성할 수 있으나, 필요량을 충족하려면 식이 섭취가 필수적이다. 미국 국립보건원(NIH)에 따르면 19세 이상 성인 여성은 하루 425mg, 남성은 550mg의 콜린을 섭취해야 하며, 삶은 계란 1개에는 약 147mg의 콜린이 함유돼 있다. 그 외에도 볶은 대두(반 컵, 107mg), 쇠간(조리된 85g, 356mg), 대구(조리된 85g, 71mg) 등이 대표적인 콜린 공급원이다. 연구진은 "계란은 영양학적으로 밀도 높은 식품이며, 특히 콜린 섭취의 효율적인 공급원으로서 고령층 식단에 포함될 만한 가치가 있다"며 "단순한 습관 변화로도 알츠하이머의 발생 가능성을 낮출 수 있다는 점에서, 예방의학적 접근이 중요한 시점"이라고 강조했다.
-
- 생활경제
-
[먹을까? 말까?(108)] 계란 섭취, 알츠하이머 예방 효과 확인⋯"주 2회 섭취로 발병 위험 40% 감소"
-
-
[퓨처 Eyes(92)] 신약 개발 '수년'을 '수주'로⋯세포 속 'AI 진화 엔진' 나왔다
- 호주 과학자들이 살아있는 세포를 '인공지능(AI) 엔진'처럼 활용해 신약 개발 기간을 획기적으로 단축하는 기술을 개발했다. '프로테우스(PROTEUS)'라 불리는 이 기술은 인체와 유사한 포유류 세포 안에서 원하는 기능을 가진 분자만 골라 빠르게 진화시키는 방식이다. 수년이 걸리던 신약 후보 물질 탐색을 몇 주 만에 끝낼 수 있어, 과학계의 큰 주목을 받고 있다. 프로테우스(PROTEUS)는 '선택 기반 단백질 진화(PROTein Evolution Using Selection)'의 약자로, 이 시스템은 유전자 치료로부터 질병 치료 단백질에 이르기까지 모든 것을 설계하는 방식을 바꿀 수 있다. 메디컬익스프레스에 따르면 기존에도 진화의 원리를 이용해 원하는 분자를 만드는 '지향적 진화(directed evolution)' 기술은 있었지만, 주로 구조가 단순한 박테리아나 효모에서만 가능했다. 인체처럼 복잡한 포유류 세포에서 이 기술을 구현한 것은 프로테우스가 세계 최초다. 신약 개발은 물론 유전자 치료 분야의 패러다임을 바꿀 기술로 기대를 모은다. AI처럼 문제 푸는 '유전자 택배상자' 프로테우스의 핵심은 '키메라 바이러스 유사 소포'라는 특별한 '유전자 택배상자'에 있다. 연구팀은 인체에 무해하도록 바이러스의 유전자를 조작해, 원하는 유전 정보(돌연변이 후보)를 세포 안으로 안전하게 배달하는 시스템을 만들었다. ZME 사이언스에 따르면 이 소유전자 택배상자는 포유류 세포에 침투할 수 있는 알파바이러스인 셈리키 포레스트 바이러스(Semliki Forest Virus)의 변형된 버전을 기반으로 한다. 셈리키 포레스트 바이러스는 생물학 연구에서 바이러스 생활주기 및 바이러스 신경병증 모델로 광범위하게 사용되어 왔다. 연구팀은 셈리키 포레스트 바이러스에서 감염을 유발할 수 있는 단백질 껍질인 바이러스 캡시드를 제거하고 완전히 다른 바이러스의 외피 단백질로 대체했다. 이러한 하이브리드 설계 덕분에 PROTEUS는 인체에 무해하게 안전하고 견고하게 작동할 수 있었다. 택배상자가 세포 안에 들어가면, 그 안의 유전 정보가 세포의 생존과 기능에 어떤 영향을 주는지 시험이 시작된다. 이 중 특정 질병을 억제하는 등 연구팀이 원하는 '정답'에 가까운 기능을 보이는 유전자만 살아남아 다음 진화 단계로 넘어간다. 수백만 개의 후보군이 이런 과정을 거치며 가장 뛰어난 성능을 가진 분자만 남게 된다. 마치 AI가 수많은 데이터 속에서 최적의 답을 찾아내는 것과 같은 원리다. 실험으로 증명된 강력한 성능 연구팀은 프로테우스의 성능을 여러 실험으로 증명했다. 특정 항생제(독시사이클린)를 무력화하는 단백질을 만드는 데 단 4번의 진화 주기만으로 성공했다. 약물에 반응해 유전자를 켜고 끄는 '유전자 스위치'의 성능 개선 실험에서는 더욱 놀라운 결과를 보였다. 기존 스위치를 30번 진화시켜, 약물에 6배나 더 민감하게 반응하는 새로운 버전을 개발한 것이다. 특히 이 새로운 스위치는 복잡한 포유류 세포에서만 작동해, 기존 기술의 한계를 명확히 뛰어넘었음을 입증했다. 암 신호 감지하는 '나노바디'도 뚝딱 가장 주목받는 성과는 암 발생의 중요 신호를 감지하는 바이오센서를 만든 것이다. 연구팀은 항체의 크기를 줄인 '나노바디(nanobody)'를 진화시켜, 암세포의 특징 중 하나인 DNA 손상을 정확히 찾아내도록 했다. 기존 나노바디는 세포핵 안의 목표물(종양 억제 단백질 p53)을 잘 찾지 못했지만, 35번의 진화를 거친 나노바디는 암세포 안에서 목표물을 정확히 찾아내 밝은 빛을 내는 데 성공했다. 이러한 실험은 안전한 환경을 위해 아기 햄스터의 신장 세포(BHK-21)에서 진행됐다. 여기서 만들어진 고성능 분자들은 이후 인간 세포 환경에서도 뛰어난 성능을 발휘하는 것으로 확인됐다. 열린 기술, 밝은 미래를 향하다 이번 연구 성과는 국제 학술지 '네이처 커뮤니케이션스'에 실렸으며, 프로테우스 기술은 전 세계 연구자들이 쓸 수 있도록 오픈 소스로 공개됐다. 연구를 주도한 호주 시드니 대학교의 그레그 닐리 교수는 "프로테우스는 우리 몸에 최적화된 분자를 만들어, 기존 기술로는 불가능했던 신약 개발을 가능하게 한다"고 말했다. 같은 대학의 크리스토퍼 데네스 박사 또한 "이제 우리는 해결하기 어려운 유전 문제를 세포에 제시하고, 세포가 어떻게 해답을 찾는지 실시간으로 관찰할 수 있게 됐다"고 그 뜻을 설명했다. 프로테우스는 앞으로 질환이나 인체 조직에 따라 특화된 맞춤형 치료제 개발의 문을 활짝 열 것으로 보인다. 인류의 건강한 미래를 앞당길 이 '세포 속 AI'의 활약에 전 세계의 이목이 쏠리고 있다.
-
- 포커스온
-
[퓨처 Eyes(92)] 신약 개발 '수년'을 '수주'로⋯세포 속 'AI 진화 엔진' 나왔다
-
-
[퓨처 Eyes(91)] 바이러스인가 세포인가⋯생명의 정의 뒤흔드는 '스쿠나아르카에움' 발견
- 기존 생명의 규칙을 깨는 새로운 생물체가 발견됐다. 과학계가 '생명'의 경계를 다시 그려야 할지도 모른다. 생명과 무생물을 넘나드는 이 유기체는 바이러스도 아니고 완전한 세포도 아니면서, 두 가지 특성을 모두 지녀 학계의 큰 관심을 끌고 있다. 캐나다와 일본 공동 연구팀이 발견한 이 유기체 '스쿠나아르카에움 미라빌레(Sukunaarchaeum mirabile)'는 바이러스처럼 숙주에 기생하지만, 세포처럼 스스로 유전 정보를 복제하는 능력을 가졌고, 생명과 비생명의 정의에 근본적인 질문을 던진다. 캐나다 댈하우지 대학교 하라다 료 분자생물학자가 이끄는 연구팀은 거의 우연히 이 생물체를 발견했다. 연구팀은 해양 플랑크톤 '키타리스테스 레기우스(Citharistes regius)'의 게놈을 연구하다, 기존에 알려진 어떤 생물과도 다른 독특한 DNA 고리를 찾아냈다. 분석 결과 이 유기체는 고세균(Archaea) 영역에 속하는 것으로 나타났다. 고세균은 겉모습은 박테리아와 비슷하지만, 유전적으로는 완전히 다른 생물 그룹이다. 과학자들은 지구의 모든 생명체를 크게 세균, 고세균, 진핵생물(인간과 동식물 포함) 세 영역으로 나누는데, 놀랍게도 인간은 세균보다 고세균과 더 가깝다. 기존 상식 파괴한 '초소형 유전체' 스쿠나아르카에움의 가장 놀라운 특징은 유전 정보의 총량, 즉 게놈(Genome)의 크기가 극도로 작다는 점이다. 이 생물의 게놈은 DNA를 이루는 글자인 '염기쌍'이 23만 8000개에 불과하다. 이는 지금까지 알려진 가장 작은 고세균의 게놈(49만 염기쌍)의 절반에도 미치지 못하는 크기다. 이렇게 축소된 게놈은 자신을 복제하는 데 필요한 기구 말고는 거의 아무것도 담고 있지 않아 강박적인 복제에의 집중을 드러낸다. 이 유기체는 스스로 에너지를 만들거나 대부분의 대사 기능을 수행하지 못하고 생존과 증식을 위해 숙주에 의존한다는 점에서 바이러스와 비슷하다. 하지만 일반적인 바이러스와 달리, 생명 활동의 핵심인 리보솜과 메신저 RNA를 스스로 만드는 유전자를 가졌다. 생명체의 모든 정보는 DNA라는 거대한 설계도에 담겨있다. 이 설계도 원본(DNA)에서 필요한 부분만 복사한 사본이 메신저 RNA이며, '단백질 공장'인 리보솜은 이 사본을 보고 생명 활동에 필수적인 단백질을 만들어낸다. 바이러스는 이 공장과 사본을 모두 숙주에게서 훔쳐 써야 하지만, 스쿠나아르카에움은 스스로 공장을 짓고 사본을 만들 능력이 있는 셈이다. 생명의 정의, 경계에 서다 연구팀은 생물학 논문 사전 공개 사이트 '바이오아카이브(bioRxiv)'에 게재한 논문에서 "이 유기체의 게놈은 극도로 축소돼 인식 가능한 거의 모든 대사 경로가 없으며, 주로 DNA 복제, 전사, 번역 같은 복제 핵심 기제를 암호화하는 정보만 담고 있다"고 밝혔다. 여기서 전사는 DNA 설계도를 메신저 RNA로 복사하는 과정, 번역은 메신저 RNA 정보를 이용해 단백질을 만드는 과정을 뜻한다. 연구팀은 이어 "이는 숙주에 대한 전례 없는 수준의 대사 의존성을 시사하며, 최소한의 세포 생명과 바이러스의 기능상 구분에 도전하는 조건"이라고 설명했다. 과학계에서는 통상 스스로 번식하고 성장하며 에너지를 만드는 단세포 생물 이상을 생명으로 정의했다. 이 때문에 숙주 없이는 아무 활동도 못 하는 바이러스는 생명과 무생물 사이의 회색지대에 있는 존재로 여겼다. 스쿠나아르카에움의 등장은 이 회색지대의 폭을 더욱 넓혔으며, 생명과 비생명의 경계에 있는 존재라는 평가가 나온다. "세포 진화의 비밀 풀 열쇠 될까" '스쿠나아르카에움'의 존재는 자연이 인간의 엄격한 정의를 따르지 않는다는 점을 보여준다. 또한 이번 발견은 세포 생명체와 바이러스의 경계가 생각보다 훨씬 더 넓고, 아직 알려지지 않은 생물학적 다양성이 있다는 점을 알려준다. 연구팀은 논문을 통해 "스쿠나에르카에움의 발견은 세포 생명의 기존 경계를 허물고, 미생물 상호작용 안에 있는 아직 밝혀지지 않은 광대한 생물학적 신비를 드러낸다"고 강조했다. 또한 "공생 시스템을 추가로 탐사하면 훨씬 더 특별한 생명 형태를 드러내 세포 진화에 대한 우리의 이해를 새롭게 바꿀 수 있을 것"이라고 덧붙였다.
-
- 포커스온
-
[퓨처 Eyes(91)] 바이러스인가 세포인가⋯생명의 정의 뒤흔드는 '스쿠나아르카에움' 발견
-
-
[먹을까? 말까?(105)] 해삼, 암 확산 억제 가능성⋯'해삼 유래 당질' 주목
- 심해 바닥을 청소하는 생물로 알려진 해삼이 암세포 확산을 늦출 수 있는 생리활성 물질의 보고로 주목받고 있다. 최근 미국 미시시피대학(UM)과 조지타운대학 공동 연구진은 해삼에서 추출한 당질이 암 성장에 관여하는 효소를 억제할 수 있다는 연구 결과를 발표했다고 어스닷컴이 12일(현지시간) 보도했다. 미시시피대학에 따르면 연구팀은 플로리다해삼(Holothuria floridana)에서 얻은 '푸코실화 콘드로이틴 설페이트(fucosylated chondroitin sulfate)'라는 복합 당질에 주목했다. 이 성분은 암세포의 전이를 유도하는 것으로 알려진 Sulf-2 효소의 활성을 저해하는 것으로 나타났다. 특히 이번 실험은 생체 실험과 컴퓨터 모델링 결과가 일치해 신뢰도를 높였다는 평가다. Sulf-2는 암세포가 세포 외 기질을 조작해 스스로를 보호하고 전이를 촉진하는 과정에서 중요한 역할을 하는 효소다. 공동저자인 미시시피대학 의약화학과 로버트 도어크센 교수는 "시뮬레이션 결과와 실험 데이터가 정합적이어서 이 물질의 효능에 대한 확신을 높였다"고 말했다. 이번 연구의 주저자인 UM 생물분자과학과 4학년 박사과정생인 마르와 패러그는 "해양 생물은 육지 척추동물에서는 흔히 발견되지 않거나 보기 드문 독특한 구조를 가진 화합물을 생성한다"고 말했다. 그는 이어 "해삼의 당 화합물은 독특하다. 다른 생물에서는 흔히 발견되지 않죠. 그래서 연구할 가치가 있다"고 덧붙였다. 이번 연구에서 주목할 점은 기존 Sulf-2 억제제와 달리 해삼 당질은 혈액응고에 부정적인 영향을 주지 않는다는 사실이다. 공동 연구자인 약리학 교수 조슈아 샤프는 "암 치료제 가운데는 항응고 작용이 있어 출혈 위험이 큰 경우가 많다"며 "이번 해삼 유래 물질은 그 같은 부작용이 관찰되지 않았다"고 설명했다. 해삼은 동남아시아를 중심으로 식재료 및 민간약으로 활용돼 온 생물이다. 단백질, 콜라겐, 비타민, 당질 등 다양한 생리활성 물질을 함유하고 있으며, 해저의 유기물을 걸러내는 과정에서 해양 생태계 유지에도 기여한다. 이러한 해삼의 특성은 육상 동물 유래 물질보다 바이러스 오염 위험이 적고, 보다 청정한 약물 원료로서의 가능성을 제시한다. 다만 해삼 자원은 무한정하지 않다. 연구진은 "현재 상태로는 해삼을 대량 채취해 약물로 활용하기엔 비현실적이며, 자원의 고갈을 초래할 수도 있다"며 "화학적 합성 경로를 확보해야 상용화가 가능할 것"이라고 밝혔다. 이에 따라 향후 인공 합성 또는 해양 생물 유래 생합성 플랫폼 개발이 중요한 과제가 될 전망이다. 이번 연구는 암세포의 외막을 구성하는 당질(Glycan) 구조를 조절하는 효소에 주목해 해양 생물 유래 물질로 이를 제어하려는 시도다. 연구를 주도한 마르와 패러그 박사과정생은 “해양 생물에서 유래한 물질은 육상 생물에선 발견되지 않는 독특한 구조를 지녀 신약 개발의 가능성을 넓힌다”고 강조했다. 이 연구 결과는 학술지 '당생물학(Glycobiology·글리코바이올로지)'에 게재됐다. 보조 저자인 비토르 포민 교수는 "질병은 단일 전공으로 해결할 수 없다"며 "이번 연구는 생화학, 약리학, 계산생물학, 해양과학의 통합적 협력이 이룬 성과"라고 밝혔다. 보잘것없어 보이는 심해 생물이 전 세계 수억 명의 생명을 위협하는 암 치료에 돌파구가 될 가능성이 제시된 가운데, 향후 동물실험과 임상단계에서의 검증이 이어질지 학계와 산업계의 이목이 집중되고 있다.
-
- IT/바이오
-
[먹을까? 말까?(105)] 해삼, 암 확산 억제 가능성⋯'해삼 유래 당질' 주목



